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Abstract—A generalization of the dynamic regressor extension and mixing procedure is pro-
posed, which, unlike the original procedure, first, guarantees a reduction of the unknown param-
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1. INTRODUCTION

In recent years, in the literature on adaptive control and identification theory, more than a
hundred papers have been published (see the references, the ones therein and review [1]) devoted
to development of methods to identify unknown time-invariant parameters of linear regression
equations with improved properties both in terms of transient quality indexes and the necessary
conditions for parameters estimates convergence to their true values. A considerable part of these
studies is based on the Dynamic Regressor Extension and Mixing (DREM) procedure [2] and its
analogs (integral modification I-DREM [3], procedures to generate new scalar excited regressor
G+D and D+G [4, 5], scalar identification schemes with finite-time convergence [6], etc.).

The basic DREM procedure [2] consists of the regressor extension and mixing steps. In the
first step, the initial linear regression, which regressor is usually a vector, is transformed into an
extended one with a square regressor matrix using stable dynamic operators and special extension
schemes [1, 7, 8]. In the second step, the obtained equation is multiplied with the extended regressor
adjunct matrix to convert it into a set of scalar equations with the same scalar regressor.

In contrast to the well-known conventional gradient identifier [9], the DREM procedure [2]:
1) allows one to introduce a set of scalar estimation laws, each of which is responsible for identifica-
tion of a certain unknown parameter, and the accuracy and convergence rate of such identification
can be improved by adjustment of such laws scalar adaptive gains, and 2) relaxes the regressor
persistent excitation requirement and guarantees asymptotic convergence of estimates to the true
values if the scalar regressor is non-square integrable. Modified DREM procedures [3–6], in turn,
relax this condition and ensure exponential or finite-time convergence of the parameter error to
zero if the regressor is finitely or initially exciting.

However, as it has been analytically proved and experimentally demonstrated in [7, 8], for DREM
like procedures [2–6] the condition of the regressor finite excitation is necessary to obtain a scalar
regressor that is bounded away from zero, and therefore it is a convergence condition. If this
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RELAXATION OF CONDITIONS FOR CONVERGENCE 17

requirement is not met in schemes [2–6], the unknown parameters identification error, as well as
the regressand tracking error, cannot be reduced. At the same time, even when the condition of
regression finite excitation is not satisfied, the classical gradient identifier [9] ensures the unknown
parameters identification error reduction and an asymptotic convergence of the tracking error, which
significantly narrows the applicability domain of the DREM-like procedures [2–6] in comparison
with this approach.

Generally speaking, the condition of the regressor finite excitation is quite a weak require-
ment [10] and not satisfied in two main situations: 1) at least one element of the regressor is
identically zero; 2) a linear dependence between the components of the regressor occurs [5].

It is proved in [10] that the state vector of a stationary plant in the Frobenius form is excited
finitely over the initial time interval if the reference signal is non-differentiable at least at one point
of such interval, which is true, for example, if the reference signal is a Heaviside function. However,
practical experience makes it possible to conclude that for each specific identification problem and
each specific parameterization there exist their own particular requirements, which are necessary to
ensure the regressor finite excitation. Currently, no generalized formalized criteria accepted by the
control community have been proposed to verify a priori that the regressor is finitely exciting for
an arbitrary parametrization. Therefore, as far as the identification and adaptive control problems
are concerned, it is necessary to apply only such identification procedures and algorithms that are
capable of ensuring the reduction of the unknown parameter estimation error and the convergence
of the tracking error even when the regressor finite excitation is not provided, which, in particular,
motivates the development of a modified dynamic regressor extension and mixing procedure with
a relaxed convergence condition.

Such a relaxed requirement could be, for example, a semi-finite excitation condition, which, in
contrast to the finite excitation condition, is met as long as at least one of the regressor elements
is non-zero, even in case of linear dependence between all the regressor components [11].

To date, two main approaches [12–14] have been proposed in the literature known to the authors
that relax the convergence condition of the basic DREM procedure to the requirement of semi-finite
excitation.

In [12], an identification law with switches has been proposed, in which the I-DREM-based
law is used when the condition of finite excitation is satisfied, and the conventional gradient law
is applied when the requirement of semi-finite excitation is met. The main disadvantage of this
approach is that in the second case it ensures the unknown parameter identification quality that
coincides with the conventional gradient identifier. In [13, 14], on the basis of the modified Gramm-
Schmidt process, the algorithm to remove linearly dependent rows and columns from the extended
regressor matrix has been developed, which allows one to reduce the problem of the unknown
parameters identification to the problem of numerical solution of algebraic equations system in
case the analytical dependence of the unknown parameters from each other is known. However,
there are some hesitations that these equations can be solved when the unknown parameters are
independent from each other and, consequently, the extension of the method from [13, 14] to the
general case faces difficulties.

Thus, the problem to relax the convergence condition of the basic procedure of dynamic regressor
extension and mixing is actual and does not have effective solutions up to date. Therefore, in
this study a new step of regularization of the extended regressor is proposed to be added to the
conventional DREM procedure to relax its convergence condition.

The aim of the regularization step is to, first, check the conditions that are necessary and
sufficient to generate a scalar separated-from-zero regressor and, second, virtually change the matrix
of the extended regressor when such conditions are violated. More specifically, in the regularization
step we propose to apply the eigenvalue decomposition to the extended regressor obtained by the
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18 GLUSHCHENKO, LASTOCHKIN

Kreisselmeyer filter [1], which, because of such regressor symmetry and positive semi-definiteness,
allows one to:

—verify that the condition of finite excitation of the extended regressor is met by analysis of its
eigenvalues;

—following the ridge regression method [15, 16], substitute zero eigenvalues of the regressor with
arbitrary constants.

When the semi-finite excitation condition is met, mixing of the extended regressor modified by
the regularization allows one to obtain a new regression with a non-zero scalar regressor over the
semi-finite excitation time interval. Such result is impossible without regularization. In this study
it is shown that the identification law based on such regression coincides with the DREM-based
one if the regressor finite excitation requirement is met and, in addition, if the necessary condition
of semi-finite excitation and a number of sufficient conditions are satisfied, it ensures both the
identification and tracking errors decrease.

The main result of this research is a dynamic regressor extension, regularization, and mixing
procedure that relaxes the convergence condition of the basic DREM method.

Notation

The definitions from [3, 9–11, 17], which are used in axiomatic manner to state the problem and
present the main result, are introduced.

Definition 1. The regressor ϕ (t) ∈ Rn is persistently exciting (ϕ (t) ∈ PE), if ∀t > t0 > 0 ∃T > 0
and α > 0 such that the following holds

λmin







t+T∫

t

ϕ (τ)ϕT (τ) dτ






> α, (1.1)

where α > 0 is the excitation level, λmin {.} stands for the operator that returns the minimum
eigenvalue of a matrix.

Definition 2. The regressor ϕ(t)∈Rn is finitely exciting (ϕ(t)∈FE) over the time range [t+r ; te] ⊂
[t0;∞), if there exist te > t+r > t0 > 0 and α > 0 such that

λmin







te∫

t+r

ϕ (τ)ϕT (τ) dτ







> α. (1.2)

Definition 3. The regressor ϕ (t) ∈ Rn is semi-persistently exciting (ϕ (t) ∈ s-PE) with the time-
invariant rank 0 < r < n, if ∀t > t0 > 0 ∃T > 0 and 0 < α 6 α such that ∀i ∈ {1, . . . ,r} the inequal-
ity holds

α 6 λi







t+T∫

t

ϕ (τ)ϕT (τ) dτ






6 α, (1.3)

where 0 < α 6 α is a partial excitation level.

Definition 4. The regressor ϕ (t) ∈ Rn is semi-finitely eciting (ϕ (t) ∈ s-FE) with time-invariant
rank 0 < r < n over the time range [t+r ; te] ⊂ [t0; ∞), if there exists te > t+r > 0 and 0 < α 6 α such
that ∀i ∈ {1, . . . ,r} it holds that

α 6 λi







te∫

t+r

ϕ (τ)ϕT (τ) dτ







6 α. (1.4)
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RELAXATION OF CONDITIONS FOR CONVERGENCE 19

The relations between the introduced regressor excitation types are specified as follows:

ϕ (t) ∈ PE ⇒
{

ϕ (t) ∈ FE
ϕ (t) ∈ s-PE

}

⇒ ϕ (t) ∈ s-FE.

The requirements (1.1) and (1.2) impose constraints on all eigenvalues of the Gramm matrix,
whereas (1.3) and (1.4) restrict only some of them. That is why the condition ϕ (t) ∈ s-FE is the
weakest one and, as far as limiting case is considered, is met when r = 1 if at least one of the
regressor ϕ (t) elements is non-zero over the time range [t+r ; te] ⊂ [t0; ∞).

An important role in the modern identification theory is played by the Kreisselmeyer filtering,
which allows one to transform a vector regressor ϕ (t) ∈ Rn into a matrix one ϕ (t) ∈ Rn×n without
loss of excitation:

∀t > t0 ϕ̇ (t) = −lϕ (t) + ϕ (t)ϕT (t) , ϕ (t0) = 0n×n, (1.5)

where l > 0 is the Kreisselmeyer filter parameter.

The properties of the matrix regressor ϕ (t) ∈ Rn×n with respect to the conditions (1.1)–(1.4)
on ϕ (t) ∈ Rn are copied from [8, 11].

Corollary 1. ϕ (t) ∈ PE ⇔ ∀t > kT λmin (t) > µ.

Corollary 2. ϕ (t) ∈ FE ⇔ ∀t ∈ [tδ; tδ + δ] ⊂ [t+r ; te] λmin (t) > µ.

Corollary 3. ϕ (t) ∈ s-PE ⇔ ∀t > kT ∀i ∈ {1, . . . ,r} λi (t) > µ.

Corollary 4. ϕ (t) ∈ s-FE ⇔ ∀t ∈ [tδ; tδ + δ] ⊂ [t+r ;te] ∀i ∈ {1, . . . ,r}λi (t) > µ.

Here k > 1 is a positive integer number, µ > 0 is a lower bound of the eigenvalue, λi (t) is the
ith eigenvalue of the regressor ϕ (t), λmin (t) = min

16i6n−r
λi (t) is the minimum separated-from-zero

eigenvalue of the regressor ϕ (t), r = n− r is the rank deficiency.

The proofs of Corollary 1 and 2 are given in [8, 11] respectively, while the proofs of Corollary 3
and 4 can be obtained in the same way.

Based on the definition of the eigenvalue decomposition of the positive semi-definite time-
invariant matrix from [17], the definition of the eigenvalue decomposition of the dynamic regressor
ϕ (t) ∈ Rn×n is introduced.

Definition 5. The eigenvalue decomposition of the regressor ϕ(t)∈Rn×n with piecewise-constant
rank r (t) 6 n is defined as follows:

V T (t)ϕ (t)V (t) =

[

V T
1 (t)

V T
2 (t)

]

ϕ (t)
[

V1 (t) V2 (t)
]

= Λ(t) =

[

Λ1 (t) 0r(t)×r(t)

0r(t)×r(t) 0r(t)

]

,

Λ1 (t) ∈ Rr(t)×r(t) = diag
{

λ1 (t) , λ2 (t) , . . . , λr(t) (t)
}

,

(1.6)

where V1(t)∈Rn×r(t) stands for a time-varying orthonormal basis of ϕ(t) eigenspace, V2(t)∈Rn×r(t)

is a time-varying orthonormal basis of ϕ (t) nullspace, λ1 (t) > λ2 (t) > · · · > λr(t) (t) > 0 denote

nonzero eigenvalues of ϕ (t), 0r(t) ∈ Rr(t)×r(t) is a zero matrix, 0r(t)×r(t) ∈ Rr(t)×r(t), 0r(t)×r(t) ∈
Rr(t)×r(t) stands for zero matrices of corresponding dimensions.

2. PROBLEM STATEMENT

The classical problem of the time-invariant parameters identification of a linear regression equa-
tion is considered:

∀t > t0 z (t) = ϕT (t) θ, (2.1)
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20 GLUSHCHENKO, LASTOCHKIN

where ϕ (t) ∈ Rn, z (t) ∈ R are measurable regressor and function (regressand), θ ∈ Rn is a vector

of unknown time-invariant
(

θ̇ ≡ 0
)

and bounded (‖θ‖ 6 θmax) parameters.

It is assumed that the following assumption holds for ϕ (t).

Assumption 1. The regressor ϕ (t) is bounded: ‖ϕ (t)‖ 6 ϕmax.

In general case, the above-stated requirement can be met with the help of multiplication of (2.1)
by ns =

1
1+ϕT(t)ϕ(t)

.

The aim is to derive the adaptive law to obtain the estimations θ̂ (t) ∈ Rn, which, when ϕ (t) ∈
s-FE, ensures that:

∥
∥
∥θ̃ (te)

∥
∥
∥ 6 β

∥
∥
∥θ̃

(
t+r

)
∥
∥
∥ , β ∈ (0; 1) ,

|z̃ (te)| 6 β
∣
∣z̃

(
t+r

)∣
∣ ,

(2.2)

where z̃ (t) = ϕT (t) θ̂ − z (t) is the tracking error, θ̃ (t) = θ̂ (t)− θ stands for the parameter error.

The inequalities (2.2) mean the reduction of θ̃ (t) and z̃ (t) respectively over the time range
[t+r ; te]. The requirement ϕ (t) ∈ s-FE is the convergence condition of the desired adaptive law.
The convergence is capability to reduce the initial values of the errors z̃ (t+r ) and θ̃ (t+r ).

2.1. Gradient-based Identification Law

The classical solution, which ensures that the goal (2.2) is achieved, is the gradient-based iden-
tification law:

˙̂
θ (t) = −Γϕ (t)

(

ϕT (t) θ̂ (t)− z (t)
)

, Γ = ΓT > 0, (2.3)

which convergence is guaranteed when ϕ (t) ∈ s-FE and, in general, it ensures the following prop-
erties:

a1) ϕ (t) ∈ PE ⇔






lim
t→∞

∥
∥
∥θ̃ (t)

∥
∥
∥ = 0 (exp)

lim
t→∞

|z̃ (t)| = 0 (exp) ;

a2) lim
t→∞

|z̃ (t)| = 0;

a3) λmin (Γ) = λmax (Γ) ⇒
∥
∥
∥θ̃ (ta)

∥
∥
∥ 6

∥
∥
∥θ̃ (tb)

∥
∥
∥∀ta > tb;

a4) ϕ (t) ∈ s-FE ⇒
{ ∥

∥
∥θ̃ (te)

∥
∥
∥ 6 β

∥
∥
∥θ̃ (t+r )

∥
∥
∥ , β ∈ (0; 1)

|z̃ (te)| 6 β |z̃ (t+r )| ;
a5) when ϕ (t) ∈ PE there is an optimal value of Γ that maximizes the rate of exponential

convergence of the parameter error θ̃ (t) to zero. The change of any element of the matrix Γ
affects the transients quality of all θ̃i (t).

Despite ensuring some properties when ϕ (t) ∈ s-FE (a4), the law (2.3) guarantees exponential
convergence of θ̃ (t) and z̃ (t) to zero if the strict condition of the regressor persistent excitation
(a1) is met, provides monotonicity of the parameter error norm only (a3), and each element of the
arbitrary parameter Γ affects the transients quality of all errors (a5).

To overcome the disadvantages of the law (2.3), in [2] a DREM procedure has been proposed,
according to which, firstly, the regression (2.1) is processed using the regressor extension and
mixing operations, and then, on the basis of the obtained new regression, the unknown parameter
identification law is introduced. The synthesis procedure and properties of such a law is considered
below.
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RELAXATION OF CONDITIONS FOR CONVERGENCE 21

2.2. Dynamic Regressor Extension and Mixing

In the step of extension the initial vector regressor ϕ (t) ∈ Rn is transformed into the matrix
one ϕ (t) ∈ Rn×n using, for an instance, the filter (1.5):

ϕ̇(t) = −lϕ(t) + ϕ(t)ϕT(t), ϕ (t0) = 0n×n,

ẏ(t) = −ly(t) + ϕ(t)z(t), y (t0) = 0n,
(2.4)

where y (t) ∈ Rn is the extended regressand.

After filtering (2.4) the extended regression equation is obtained:

y (t) = ϕ (t) θ, (2.5)

which regressor, in accordance with Corollary 1–4, could be used to verify the fact that any of the
conditions (1.1)–(1.4) is met.

In the mixing step, in accordance with [2], the matrix regressor ϕ (t) ∈ Rn×n is transformed
into scalar one ω (t) ∈ R by way of multiplication of (2.5) by the adjoint matrix adj {ϕ (t)} and
application of the property adj {ϕ (t)}ϕ (t) = det {ϕ (t)} In×n:

Y (t) = ω(t)θ,

Y (t): = adj {ϕ(t)} y(t), ω(t): = det {ϕ(t)} ,
(2.6)

where Y (t) ∈ Rn.

On the basis of the obtained n scalar equations (2.6) the following identification law is introduced
according to [2]:

˙̂
θi (t) =

˙̃
θi (t) = −γiω (t)

(

ω (t) θ̂i (t)− ω (t) θi (t)
)

= −γiω
2 (t) θ̃i (t) , γi > 0, (2.7)

which convergence condition is ϕ (t) ∈ FE, and it ensures the following properties:

b1)
ω (t) /∈ L2 ⇔ lim

t→∞

∥
∥
∥θ̃ (t)

∥
∥
∥ = 0;

ω (t) ∈ PE ⇔ lim
t→∞

∥
∥
∥θ̃ (t)

∥
∥
∥ = 0 (exp) ;

b2) lim
t→∞

∥
∥
∥θ̃ (t)

∥
∥
∥ = 0 ⇒ lim

t→∞

∣
∣
∣z (t)− ϕT (t) θ̂ (t)

∣
∣
∣

︸ ︷︷ ︸

|z̃(t)|

= 0 (certainty equialence) ;

b3)
∣
∣
∣θ̃i (ta)

∣
∣
∣ 6

∣
∣
∣θ̃i (tb)

∣
∣
∣ ∀ta > tb;

b4) ϕ (t) ∈ FE ⇒
{ ∥

∥
∥θ̃ (te)

∥
∥
∥ 6 β

∥
∥
∥θ̃ (t+r )

∥
∥
∥ , β ∈ (0; 1)

|z̃ (te)| 6 β |z̃ (t+r )| ;
b5) when ϕ (t) ∈ PE, the exponential convergence rate of the parameter error θ̃i (t) can be

improved by increase of γi, and change of any element γi affects only the transient quality
of the respective θ̃i (t).

As follows from the comparison of the properties a1–a5 and b1–b5, the relaxed requirement of
asymptotic convergence of the parameter error (b1), the monotonicity of the transients of each
particular error θ̃i (t) (b3) as well as the fact that the transients quality of estimates for each
particular θ̃i (t) (b5) can be adjusted with the help of γi are the advantages of (2.7) compared to
the gradient law (2.3). However, at the same time, the law (2.7) does not provide convergence
to zero of the error z̃ (t) separately from the parameter error convergence (b2) and has a stricter
convergence condition (b4).
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22 GLUSHCHENKO, LASTOCHKIN

Therefore, the main goal of this study is to develop an identification law that combines the
positive properties of (2.3) and (2.7), which means that, when ϕ (t) ∈ FE, the proposed law is
required to have the properties b1–b5 of (2.7), while when ϕ (t) ∈ s-FE—the property a4 of the
law (2.3), and in contrast to (2.7) it is required to ensure the convergence of the tracking error z̃ (t)
separately from the parameter error convergence (a2).

3. MAIN RESULT

3.1. Dynamic Regularization of Extended Regressor

Following Definition 5, the regression equation (2.5) is rewritten as

y (t) = ϕ (t) θ =
[

V1 (t) V2 (t)
]

Λ (t)

[

V T
1 (t)

V T
2 (t)

]

θ = V (t) Λ (t)V T (t) θ. (3.1)

It should be noted that, when rank {ϕ (t)} = r (t) < n, the matrix Λ (t) contains r (t) > 0 zeros

on the main diagonal, and therefore ω (t) = det {ϕ (t)} ≡ 0 ⇒
∥
∥
∥θ̃ (te)

∥
∥
∥ =

∥
∥
∥θ̃ (t+r )

∥
∥
∥. As a result, in

order to make the regressor determinant ϕ (t) be bounded away from zero when the regression with
the scalar regressor (2.6) is obtained, the zeros of the main diagonal of the matrix Λ (t) are to be
virtually substituted with non-zero numbers [15, 16]. To achieve this, we introduce the matrix Ξ (t),
which being added to Λ (t) allows one to obtain a full rank matrix:

Ξ (t) = Λ (t)− Λ (t) ,

Λ (t) : =







0n×n, if diag
{

λ1 (t) , λ2 (t) , . . . ,λn (t)
}

= εIn×n

diag
{

λ1 (t) , λ2 (t) , . . . ,λn (t)
}

, otherwise,

λi (t) : =

{

λi (t) , if λi (t) > ε
ε, if λi (t) < ε,

i = 1, n,

(3.2)

where Λ (t) is a new matrix of eigenvalues, ε > 0 stands for a parameter that defines the value of
the virtual eigenvalues, ε > 0 denotes the parameter that defines the amplitude of the eigenvalues
of ϕ (t), which are considered to be equivalently equal to zero in the presence of computation errors
and external disturbances.

The expression ±V (t) Ξ (t)V T (t) θ is added to (3.1) to obtain:

y (t) = ϕ (t) θ = V (t)Λ (t)V T (t) θ ± V (t) Ξ (t)V T (t) θ

= V (t) Λ (t)V T (t) θ − V (t) Ξ (t)V T (t) θ = Φ(t) θ − V (t) Ξ (t)V T (t) θ,
(3.3)

where Φ (t) ∈ Rn×n is a new regressor with the eigenvalues Λ (t).

The equation (3.3) is multiplied by the matrix adj {Φ (t)}, and then the following properties are
applied:

adj {Φ (t)} = det {Φ (t)}Φ−1 (t) , Φ−1 (t) = V (t) Λ
−1

(t)V T (t) ,

adj {Φ (t)}Φ (t) = det {Φ (t)} In,
to obtain:

Υ (t) = ω (t) θ − ω (t)V (t) Λ
−1

(t) Ξ (t)V T (t) θ = ω (t)Θ (t) ,

Υ(t) : = adj {Φ (t)} y (t) , ω (t) : = det {Φ (t)} ,
Θ(t) : = θ − V (t)Λ

−1
(t) Ξ (t)V T (t) θ = θ − V2 (t)V

T
2 (t) θ

︸ ︷︷ ︸

d(t)

,
(3.4)
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RELAXATION OF CONDITIONS FOR CONVERGENCE 23

where Θ (t) ∈ Rn is a vector of new unknown parameters, d (t) ∈ Rn is a disturbance, which causes
the difference between Θ (t) and θ.

The properties of the new regressor ω (t) ∈ R are presented in the following proposition.

Proposition 1. Let the matrix Λ (t) be obtained using the equation (3.2) in case ε = 0, then the

following implications hold:

1) ϕ (t) ∈ PE ⇔ ∀t > kT ω (t) > λn
min (t) > µn > 0.

2) ϕ (t) ∈ FE ⇔ ∀t ∈ [tδ; tδ + δ] ⊂ [t+r ; te] ω (t) > λn
min (t) > µn > 0.

3) ϕ (t) ∈ s-PE ⇔ ∀t > kT ω (t) > min {λn
min (t) , ε

n} > 0.

4) ϕ (t) ∈ s-FE ⇔ ∀t ∈ [tδ; tδ + δ] ⊂ [t+r ; te] ω (t) > min {λn
min (t) , ε

n} > 0.

Proof of Proposition 1 is postponed to Appendix.

Using the regression (3.4) and the properties proved in Proposition 1, the identification law with
normalization of the regressor excitation is introduced in accordance with [18]:

˙̂
θ (t) = −γ (t)ω (t)

(

ω (t) θ̂ (t)−Υ(t)
)

= −γ (t)ω2 (t)
(

θ̂ (t)− θ
)

− γ (t)ω2 (t) d (t)

= −γ (t)ω2 (t)
(

θ̂ (t)−Θ(t)
)

︸ ︷︷ ︸

Θ̃(t)

, θ̂
(
t+r

)
= θ0,

γ (t) : =







γ1, if ω (t) 6 min {λn
min (t) , ε

n}
γ0

ω2 (t)
otherwise,

(3.5)

where γ0 > 0, γ1 > 0 are arbitrary parameters of the identification law, Θ̃ (t) ∈ Rn is the error of
the vector Θ (t) identification.

Owing to the algorithm to form the matrix Ξ (t), the following theorem is valid for the law (3.5).

Theorem 1. Let Assumption 1 be met and ε = 0, then:

1) if ϕ (t) ∈ FE/ϕ (t) ∈ PE, then (3.5) has the properties b1–b5;

2) if ϕ (t) ∈ s-FE and the following sufficient conditions are met

2.1)
∥
∥
∥θ̃ (t+r )

∥
∥
∥ = β1θmax, β1 > 1,

2.2) the multiplication γ0δ is such that 1
β1

+ e−0,5γ0δ ∈ (0; 1),

then the inequalities (2.2) hold, and the convergence conditions of (3.5) are satisfied;

3) ω (t) /∈ L2 ⇒ lim
t→∞

∥
∥
∥θ̃ (t)

∥
∥
∥ 6 θmax;

4) ϕ (t) ∈ s-PE ⇒ lim
t→∞

∥
∥
∥θ̃ (t)

∥
∥
∥ 6 θmax (exp) .

In this case the rate of exponential convergence can be directly adjusted by value of the parame-

ter γ0.

Proof of Theorem 1 is given in Appendix.

As follows from the results of Theorem 1, unfortunately, the law (3.5) does not capable of
achievement the goal (2.2) if the values of θ̃ (t+r ) are chosen arbitrarily, because in a set with a

bound θmax the error norm θ̃ (t) could become greater than
∥
∥
∥θ̃ (t+r )

∥
∥
∥, which is a disadvantage of

the law (3.5) compared to the conventional gradient one (2.3). Therefore, the necessary condition
for convergence of (3.5) is a semi-finite excitation of the regressor ϕ (t) ∈ s-FE, while the sufficient
condition is that premises 2.1) and 2.2) are met. Here it should also be noted that the choice
θ̂ (t+r ) = 0n guarantees that the error θ̃ (t) does not increase over the time range [t+r ; te]. So it can
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be stated that the law (3.5) is quasi-convergent in terms of (2.2) when only the necessary condition
ϕ (t) ∈ s-FE is satisfied.

Thus, according to the proposed dynamic regressor regularization procedure (3.1)–(3.4), on the
one hand, when ϕ (t) ∈ FE, the matrix Λ (t) is not added with Ξ (t) to form a full-rank matrix, and
the law (3.5) reduces to (2.7), and on the other hand, when ϕ (t) ∈ s-FE, the matrix Λ (t) is added
with Ξ (t) to form a full rank matrix, and, in contrast to (2.7), (3.5) ensures convergence in terms
of (2.2) if the sufficient conditions are satisfied.

When the law (3.5) is applied, the global stability of the errors z̃ (t) and Θ̃ (t) is analyzed
by making different assumptions about the rank r (t) and the basis of the nullspace V2 (t). In
subsection 3.2 it is assumed that they are time-invariant, whereas in section 3.3 they are considered
to be piecewise-constant functions.

3.2. Time-Invariant Rank and Basis of Nullspace

The following assumption about the time-invariance of the rank and nullspace basis of the
regressor ϕ (t) ∈ Rn×n is introduced.

Assumption 2. There exists the decomposition (1.6) with the time-invariant matrix V2 (t) ≡ V2

of ϕ (t) ∈ Rn×n with constant rank r (t) ≡ r < n, r (t) ≡ r > 0.

Under Assumption 2, the disturbance d (t) ≡ d and the unknown parameters Θ (t) ≡ Θ are also
time-invariant.

When the law (3.5) is applied and Assumption 2 is met, taking into account the results of
Proposition 1, the properties of z̃ (t) and Θ̃ (t) are analyzed in Theorem 2. In its first statement
the unconditional properties are presented, in the second one the properties are shown that are
guaranteed when the convergence condition is met, and in the third and fourth statements the
asymptotic and exponential stability conditions are presented.

Theorem 2. When Assumptions 1 and 2 are met, the following holds:

I. ∀t > t0
∣
∣
∣Θ̃i (ta)

∣
∣
∣ 6

∣
∣
∣Θ̃i (tb)

∣
∣
∣ ∀ta > tb.

II. ϕ (t) ∈ s-FE ⇒
{ ∥

∥
∥Θ̃ (te)

∥
∥
∥ 6 β

∥
∥
∥Θ̃ (t+r )

∥
∥
∥ ;

|z̃ (te)| 6 β |z̃ (t+r )| .

III. ω (t) /∈ L2 ⇒






lim
t→∞

∥
∥
∥Θ̃ (t)

∥
∥
∥ = 0;

lim
t→∞

|z̃ (t)| = 0.

IV. ϕ (t) ∈ s-PE ⇒






lim
t→∞

∥
∥
∥Θ̃ (t)

∥
∥
∥ = 0 (exp) ;

lim
t→∞

|z̃ (t)| = 0 (exp) .

In this case the rate of exponential convergence can be directly adjusted by value of the parame-

ter γ0.

Proof of Theorem 2 is given in Appendix.

Remark 1. The asymptotic stability condition ω (t) /∈ L2 is strictly weaker than the exponential
one ϕ (t) ∈ s-PE, as, for example, there exists the regressor ω (t) = εn−1λ1 (t) , λ1 (t) =

1√
1+t

, such

that ω (t) /∈ L2 and ϕ (t) /∈ s-PE because ∄µ > 0 ∀t > t0 λ1 (t) > µ, which contradicts Corollary 3.
Therefore, when Assumption 2 is met, the weakest convergence condition of the law (3.5) to ensure
convergence of the errors Θ̃ (t), z̃ (t) to zero, and θ̃ (t) to the set θmax is the non-square integrability
of the multiplication of r eigenvalues of ϕ (t).
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3.3. Piecewise-Constant Rank and Nullspace Basis

The requirements of Assumption 2 are restrictive, and, as far as practical scenarios are concerned,
both the rank and nullspace basis of the regressor usually change their values in piecewise-constant
manner. Therefore, the properties of the law (3.5) are analyzed under the assumption that the
rank and nullspace basis of ϕ (t) are defined as piecewise-constant functions.

Assumption 3. The rank of ϕ (t) is a piecewise-constant function, and there exists its decompo-
sition (1.6) with the piecewise-constant matrix V2 (t):

∀t > t0 r (t) =
∞∑

jr=1

∆jrh (t− tjr), V2 (t) =
∞∑

jV =1

∆jV h (t− tjV ), (3.6)

where tjr is a time instant of rank change, ∆jr denotes the amplitude of rank change at time instant
tjr , tjV stands for the time instant of change of the nullspace basis V2 (t), ∆jV ∈ Rn×r(t) is the
amplitude of V2 (t) change, h (t− tjr) , h (t− tjV ) are unit step functions.

When (3.6) is met, the disturbance d (t) and unknown parameters Θ (t) are piecewise-constant
functions:

d (t) =
∞∑

j=1

∆jh (t− tj), ḋ (t) =
∞∑

j=1

∆jδ (t− tj), Θ(t) = θ −
∞∑

j=1

∆jh (t− tj), (3.7)

where tj ∈ {tjr , tjV |jr ∈ N, jV ∈ N} are time instants of d (t) change, δ (t− tj) is a Dirac function,
‖∆j‖ 6 ∆max is a bounded value of the disturbance amplitude change.

Taking into consideration proved Proposition 1, the properties ensured by the law (3.5) when
Assumptions 1 and 3 are met are stated in the following theorem.

Theorem 3. Let the premises of Assumptions 1 and 3 hold and ϕ(t)∈ s-PE with the rank r(t)> 1,
then:

∀t > kT

{ ∥
∥
∥Θ̃ (t)

∥
∥
∥ 6 a (tj) e

−γ0(t−kT )
∥
∥
∥Θ̃ (kT )

∥
∥
∥ ,

|z̃ (t)| 6 a (tj) e
−γ0(t−kT ) |z̃ (kT )| ,

(3.8)

where {a (t0) , a (t1) , . . . , a (tj) , . . .} is a numerical sequence.

Moreover, when ∃amax ∀tj > t0 a (tj) 6 amax, then Θ̃ (t) and z̃ (t) are exponentially stable:







lim
t→∞

|z̃ (t)| = 0 (exp)

lim
t→∞

∥
∥
∥Θ̃ (t)

∥
∥
∥ = 0 (exp) .

Proof of Theorem 3 and the definition of a (tj) are presented in Appendix.

On the one hand, the results of Theorem 3 show the robustness of the law (3.5) to variations of
the rank and nullspace basis of the regressor ϕ (t) in the sense of exponential recovery of equilib-
rium points of the errors Θ̃ (t) and z̃ (t), and on the other hand, describe necessary and sufficient
conditions of such errors exponential convergence to zero. These conditions are the regressor semi-
persistent excitation with rank not less than one and the fact that the inequalities a (tj) 6 amax

hold for all tj > t0.

However, Theorem 3 does not provide a constructive description of the requirements for a (tj)
or ∆j, which, being met for all tj > t0, guarantee a (tj) 6 amax and hence exponential stability of
the errors Θ̃ (t) and z̃ (t) when the rank or nullspace basis are piecewise-constant functions.

In the following corollary, we introduce two additional conditions, under which for all tj > t0 it
is ensured that the inequality a (tj) 6 amax holds.
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Corollary 5. Let the premises of Theorem 3 be met and additionally one of the following condi-

tions also hold:

1) j 6 jmax < ∞;

2) ∆max 6 c (tj) e
−γ0(tj−kT ), ∀j ∈ N c (tj) > c (tj+1) > 0.

Then there exists amax such that ∀tj > t0 a (tj) 6 amax.

Proof of Corollary 5 is given in Appendix.

According to the results of Corollary 5, the condition a (tj) 6 amax is met when the norm of
the parameter change value ∆max is upper bounded by a decreasing sequence, or when a number
of regressor nullspace base/rank switches j is finite.

3.4. Conditions of Partial Identifiability

Considering the identification problems, the main aim is to ensure the convergence of the pa-
rameter error θ̃ (t). Therefore, in addition to the results of Sections 3.2 and 3.3, the conditions
are defined under which the elements of the vector of new unknown parameters Θ (t) partially or
completely coincide with the elements of the original vector θ.

The analysis of the parameters Θ (t) properties are written as a proposition.

Proposition 2. Let the matrix Λ (t) be obtained with the help of (3.2) when ε = 0, then:

1) ϕ (t) ∈ FE/ϕ (t) ∈ PE ⇒ Θ(t) = θ;

2) if Assumption 2 and the following conditions are met:

ϕ (t) ∈ s-FE/ϕ (t) ∈ s-PE, n > 2,

n−p
∑

i=1

wiϕi (t) +
n∑

j=n−p+1

wjϕj (t) = 0n, wi 6= 0, wj = 0,

then ∃M ⊂ {1, . . . , n} , |M | = p, ∀i ∈ M, Θi = θi.

Proof of Proposition 2 is presented in Appendix1.

Thus, according to Proposition 2, the conditions of partial identifiability of parameters θ are:
(1) Assumption 2 is met, (2) the regressor ϕ (t) is semi-persistently exciting, (3) p columns of
the regressor ϕ (t) are linearly independent, (4) the identification problem dimension is n > 2.
Combining the results of Theorem 1 and Proposition 2, a corollary is obtained that describes the
convergence conditions for a part of parameter errors θ̃i (t).

Corollary 6. Let Assumptions 1, 2 and the following conditions be met:

n−p
∑

i=1

wiϕi (t) +
n∑

j=n−p+1

wjϕj (t) = 0n, wi 6= 0, wj = 0, n > 2.

Then:

a) ϕ (t) ∈ s-FE ⇔ ∀i ∈ M







∣
∣
∣θ̃i (te)

∣
∣
∣ 6 β

∣
∣
∣θ̃i (t

+
r )

∣
∣
∣

∣
∣
∣θ̃i (ta)

∣
∣
∣ 6

∣
∣
∣θ̃i (tb)

∣
∣
∣ ∀ta > tb;

b) ω (t) /∈ L2 ⇔ ∀i ∈ M







lim
t→∞

∣
∣
∣θ̃i (t)

∣
∣
∣ = 0

∣
∣
∣θ̃i (ta)

∣
∣
∣ 6

∣
∣
∣θ̃i (tb)

∣
∣
∣ ∀ta > tb;

1 In statement (2) of Proposition 2, without loss of generality, it is assumed that the first n−p columns of the regressor
ϕ (t) = [ϕ1 (t) . . . ϕi (t) . . . ϕn (t)] are linearly dependent (in case r (t) > 0 such form can always be obtained by
columns permutation).
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c) ϕ (t) ∈ s-PE ⇔ ∀i ∈ M







lim
t→∞

∣
∣
∣θ̃i (t)

∣
∣
∣ = 0 (exp)

∣
∣
∣θ̃i (ta)

∣
∣
∣ 6

∣
∣
∣θ̃i (tb)

∣
∣
∣ ∀ta > tb.

Corollary 6 is obtained by combining the consistent premises and results of Theorem 1 and
Statement 2.

Remark 2. It is worth noting the existence of regressors ϕ (t) that do not satisfy the requirements
of Proposition 2, but still ensure the existence of zero elements in the vector d and allow one to
identify some of the original unknown parameters θ. For such regressors, the fact that some elements
of d are zero is not caused by the existence of zero rows/columns in the product V T

2 V2 (see the
proof of Proposition 2), but by the equality to zero of the elements of the product V T

2 V2θ (due to
orthogonality of V2 and θ).

For an instance, if ϕ (t) =

[

1 −1
−1 1

]

, θ = ϑ
[

−1 1
]

, ϑ 6= 0, then the premises of Proposi-

tion 2 do not hold, but d = 0n, Θ = θ.

Remark 3. From the practical point of view, it is important not only to prove that some elements
of the parameter vector Θ coincide with the elements of θ under some conditions, but also to indicate
their positions in such vector. For this purpose, the indices of the zero rows of the basis V2 can be
used as such indicators if the premises of statement 2 of Proposition 2 are satisfied.

Remark 4. Under Assumption 3, the results of statement 2 of Proposition 2 are true locally over
the time intervals when the regressor rank and nullspace basis are time-invariant. Hence, when
the rank r (t) changes its value, different number p of elements of the vector θ can be identified
over different time ranges [tj−1; tj] and [tj ; tj+1], and when the regressor nullspace basis changes
its value, different elements of vector θ can be identified over different time intervals [tj−1; tj] and
[tj; tj+1].

4. MATHEMATICAL MODELLING

The DREM identification law with regularization (3.5) has been compared with the classical
gradient (2.3) and DREM without regularization (2.7) ones in Matlab/Simulink. The simulation
was conducted using numerical integration by the Euler method with a fixed discretization step
τs = 10−4 second.

Sections 4.1 and 4.2 presents the obtained simulation results under Assumptions 2 and 3 respec-
tively.

4.1. Time-Invariant Rank and Nullspace Basis of Regressor

The regression equation (2.1) was defined as:

z (t) = ϕT (t) θ =
[

−2e−t cos (t) e−t cos (t) e−t
]






4
−8
12




 . (4.1.1)

The parameters of the filter (2.4), algorithm of the eigenvalue virtual substitution (3.2) and
identification laws (3.5), (2.3) were set as:

l = 100, ε = 0,4, ε = 10−10, γ0 = 5, γ1 = 1, Γ = 5I3. (4.1.2)

In order to provide the same convergence rate for the laws (3.5) and (2.7), the adaptive gain γ
of the law (2.7) was defined similarly to (3.5), following the method of the regressor excitation
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Fig. 1. Rank of the regressor ϕ (t) (a), the disturbance d (b).

Fig. 2. Transient curves of the errors θ̃i (t) of the laws (3.5)—(a) and (2.3)—(b).

normalization [18]:

γ (t) =







γ1, if ω (t) 6 min {λn
min (t) , ε

n}
γ0

ω2 (t)
otherwise.

(4.1.3)

First of all, it was shown that the convergence conditions of the laws (2.3), (2.7) and (3.5) were
met. Figure 1 presents the behaviour of the disturbance d and the rank of regressor ϕ (t) in the
course of the experiment.

As follows from the definition of the regressor ϕ (t), Fig. 1a, the convergence conditions (ϕ (t) ∈
s-FE) of laws (2.3) and (3.5) were met for all t > 0, whereas the convergence condition (ϕ (t) ∈ FE)
of the law (2.7) was not satisfied, so the simulation results are given only for the algorithms (3.5)
and (2.3). It followed from Figs. 1a and 1b, that Assumption 2 was met, and, consequently,
since ϕ (t) ∈ s-FE, the law (3.5) guaranteed the errors Θ̃ (t) , z̃ (t) reduction in the course of the
experiment. Moreover, as Assumption 2 was satisfied, d3 = 0 and r = 2, then the law (3.5)
additionally ensured that the error θ̃3 (t) decreased.

Firstly, it was set that θ0 =
[

0 0 0
]T

, which meant that, according to Theorem 1, the law (3.5)

was quasi-convergent (the reduction of |z̃ (t)| was guaranteed, as well as the lack of growth of
∥
∥
∥θ̃ (t)

∥
∥
∥

over the time range [0; 1]).

Figure 2 presents the transients of errors θ̃i (t) of the laws (3.5)—(a) and (2.3)—(b).

The obtained transients indicate the advantages of (3.5) over (2.7) and the classical gradient (2.3)
identification laws. In particular, unlike (2.7), the law (3.5) reduced the a priori values of the
errors θ̃i (t) and, unlike (2.3), ensured the transients of first-order type and monotonic exponential
convergence of the error θ̃3 (t) to zero. The monotonicity of θ̃1 (t) can be explained by the fact that
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Fig. 3. Transient curves of (a) the error z̃ (t) of the laws (3.5) and (2.3) and (b) the errors Θ̃i (t) of the law (3.5).

Fig. 4. Transient curves of
∥
∥θ̃ (t)

∥
∥ under different initial conditions.

the condition θ1 6 Θ1, θ̂1 (t0) > Θ1 was met in the course of the experiment, which was a particular
favorable situation.

Figure 3a shows a comparison of the error z̃ (t) curves of the laws (3.5) and (2.3), while Fig. 3b
presents the transients of the error Θ̃i (t) when the law (3.5) was applied.

Figure 3a confirms that z̃ (t) was reduced over the time range [0; 1] when the law (3.5) was
applied, Fig. 3b demonstrates the monotonicity of the error Θ̃i (t) ∀i ∈ 1, n, which was proved
analytically in Theorem 2.

Figure 4 shows the behaviour of
∥
∥
∥θ̃ (t)

∥
∥
∥ obtained with the help of the laws (3.5) and (2.3)

under different initial conditions (for all initial conditions the law (3.5) was convergent or quasi-
convergent).

The transients in Fig. 4 confirm the exponential convergence of the error θ̃ (t) to a set with the
bound θmax proved in Theorem 1.

Then it was set that θ0 =
[

0 −10 14
]T

, which did not satisfy the convergence conditions from

Theorem 1 since
∥
∥
∥θ̃ (t+r )

∥
∥
∥ ≈ 4.9 and θmax = ‖θ‖ ≈ 15. Figure 5 shows the behaviour of

∥
∥
∥θ̃ (t)

∥
∥
∥ under

such choice of the initial conditions when the laws (3.5) and (2.3) were used.

The transients of
∥
∥
∥θ̃ (t)

∥
∥
∥ shown in Fig. 5 validated the conclusions made in Theorem 1. Indeed,

when
∥
∥
∥θ̃ (t+r )

∥
∥
∥ < θmax, the convergence condition of the law (3.5) was not met, and, consequently,

the error norm
∥
∥
∥θ̃ (t)

∥
∥
∥ could become greater than

∥
∥
∥θ̃ (t+r )

∥
∥
∥, and it was not ensured that all conditions

of (2.2) were met.
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Fig. 5. Transient curves of
∥
∥θ̃ (t)

∥
∥ for the laws (3.5) and (2.3).

Thus, the conducted numerical experiments fully confirmed the properties of the law (3.5)
described within Theorems 1–2, Proposition 2 and Corollary 6 when ϕ (t) ∈ s-FE and Assumption 2
was met.

4.2. Piecewise-Constant Rank and Nullspace Basis of Regressor

4.2.1. First experiment . The regression equation (2.1) was defined as follows:

z (t) = ϕT (t) θ =
[

ϕ1 (t) ϕ2 (t) ϕ3 (t)
]






4
−8
12




 ,

ϕ1 (t) = 9 sin (t) ; ϕ2 (t) =







2 sin (t) , 0 6 t 6 5

4, 5 < t 6 15

2 sin (t) , t > 15;

ϕ3 (t) =







sin (t) , 0 6 t 6 10

sin (50t) , 10 < t 6 15

sin (t) , t > 15.

(4.2.1)

The parameters of the filter (2.4), algorithm of the eigenvalue virtual substitution (3.2) and
identification laws (2.3), (3.5) were set as:

l = 100, ε = 0.4, ε = 10−10, γ0 = 5, γ1 = 1, Γ = I3. (4.2.2)

In order to provide the same convergence rate for the laws (3.5) and (2.7), the adaptive gain γ
of the law (2.7) was defined similarly to (3.5), following the method of the regressor excitation
normalization [18]:

γ (t) =







γ1, if ω (t) 6 min {λn
min (t) , ε

n}
γ0

ω2 (t)
otherwise.

(4.2.3)

First of all, it was shown that the convergence conditions of the laws (2.3), (2.7) and (3.5) were
met. Figure 6 presents the behaviour of the disturbance d (t) and rank of the regressor ϕ (t) in the
course of the experiment.

As follows from Fig. 6a and Corollaries 2 and 4, the necessary condition of the convergence
of (3.5) was met for all t > 0, while the convergence condition of (2.7) was satisfied only over
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Fig. 6. Rank of the regressor ϕ (t) (a), the disturbance d (t) (b).

Fig. 7. Transient curves of θ̃i (t) of the laws (3.5)—(a), (2.7)—(b) and (2.3)—(c).

the time range t ∈ [10; 15,34]. According to Fig. 6 the number of parameter switches was finite
j 6 jmax < ∞ and r (t) > 1, and then, according to the results of Theorem 3 and Corollary 5, all
necessary and sufficient conditions of exponential convergence of errors z̃ (t) and Θ̃ (t) to zero were
satisfied for (3.5). Moreover, since ∀t ∈ [5; 10] d2 (t) = 0, the partial identifiability conditions from
Proposition 2 were also met over the time range [5; 10].

Having verified that the convergence conditions were met, the experiments were conducted using
the algorithms (3.5), (2.7) and (2.3) under different initial conditions.

Firstly, it was set that θ0 =
[

0 5 0
]T

, which, according to Theorem 1, ensured that the

necessary conditions of convergence of the law (3.5) were met:

β1 =
∥
∥
∥θ̃

(
t+r

)
∥
∥
∥ ‖θ‖−1 ≈ 18

15
= 1.2;

1

β1
+ e−γ0δ =

1

1.2
+ e−5·5 ≈ 0.833 ∈ (0; 1) .

Figure 7 depicts the transients of θ̃i (t) for (3.5)—(a), (2.7)—(b) and (2.3)—(c).
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Fig. 8. Transient curves of z̃ (t) of the laws (3.5)—(a), (2.7)—(b) and (2.3)—(c).

Fig. 9. Transient curve of the error Θ̃ (t) norm.

The obtained transients confirmed the theoretical conclusions made in Remark 4. Indeed, if the
conditions of the second statement of Proposition 2 were met over [5; 10], then the law (3.5), in
contrast to (2.7) and (2.3), ensured monotonicity for one element of the vector θ̃ (t). Comparing
the quality of the transients, the advantages of the law (3.5) over (2.7) and (2.3) are seen. As
for (2.3), the law (3.5) guaranteed the first-order type transient of θ̃i (t) ∀i ∈ 1, n. In comparison
with (2.7), the law (3.5) converged not only over the time range [10; 15,34], but for all t > 0, and
ensured that one element of the vector θ̃ (t) decreased to zero over [5; 10].

Figure 8 presents the transients of z̃ (t) for the control systems based on the laws (3.5)—(a),
(2.7)—(b) and (2.3)—(c).

The transients that are depicted in Fig. 8 validate that the tracking error θ̃(t) recovered expo-
nenially to its equilibrium, as it was is proved in Theorem 3, when ϕ (t) ∈ s-PE and Assumption 3
was met.

Figure 9 presents the behaviour of the norm of Θ̃ (t).
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Fig. 10. Transient curves of
∥
∥θ̃ (t)

∥
∥ of the laws (3.5), (2.7) and (2.3).

Fig. 11. Transient curves of
∥
∥θ̃ (t)

∥
∥ of the laws (3.5), (2.7) and (2.3).

Having analyzed Fig. 9, it was concluded that the parameter error Θ̃ (t) recovered to its equilib-
rium point when ϕ (t) ∈ s-PE and Assumption 3 was met, which validated the conclusions made
in Theorem 3.

As the number of the rank switches was finite j 6 jmax < ∞, then, according to Theorem 3
and Corollary 5, exponential recovery of z̃ (t) and Θ̃ (t) to their respective equilibrium points was
equivalent to exponential stability.

Figure 10 presents transients of
∥
∥
∥θ̃ (t)

∥
∥
∥ when the laws (3.5), (2.7) and (2.3) were applied.

The transients of
∥
∥
∥θ̃ (t)

∥
∥
∥ obtained with the help of the law (3.5) confirmed the conclusions made

in Theorem 1. The goal (2.2) was achieved when ϕ (t) ∈ s-FE and sufficient conditions were met,
and θ̃ (t) did exponentially converge to the set with the bound θmax, while such properties were
ensured by (2.3) only for all t > 5, and by (2.7)—only for ϕ (t) ∈ FE.

Then it was set that θ0 =
[

0 −10 14
]T

, which did not meet the sufficient convergence condi-

tions of Theorem 1 since
∥
∥
∥θ̃ (t+r )

∥
∥
∥ ≈ 4.9 and θmax = ‖θ‖ ≈ 15. Figure 11 shows the transients of

∥
∥
∥θ̃ (t)

∥
∥
∥ obtained under such choice of initial conditions when the laws (3.5), (2.7) and (2.3) were

applied.

The simulation results shown in Fig. 11 follows the results of Theorem 1. Indeed, when
∥
∥
∥θ̃(t+r )

∥
∥
∥ <

θmax, the law (3.5) did not converge (when
∥
∥
∥θ̃ (t+r )

∥
∥
∥ = θmax, it was quasi-convergent), and the error

norm
∥
∥
∥θ̃ (t)

∥
∥
∥ could become greater than

∥
∥
∥θ̃ (t+r )

∥
∥
∥.
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Fig. 12. Rank of the regressor ϕ (t) (a), the disturbance d (t) (b).

4.2.2. Second experiment . The regression equation (2.1) was defined as:

z (t) = ϕT (t) θ =
[

ϕ1 (t) ϕ2 (t) ϕ3 (t)
]






4
−8
12




;

ϕ1 (t) =







−2e−t cos (t) , 0 6 t 6 1

e−t, 1 < t 6 2

e−t cos (t) , t > 2;

ϕ2 (t) =







e−t cos (t) , 0 6 t 6 1

−2e−t cos (t) , 1 < t 6 2

e−t + 0,1, t > 2;

ϕ3 (t) =







e−t, 0 6 t 6 1

e−t cos (t) , 1 < t 6 2

−2e−t cos (t) , t > 2.

(4.2.4)

The parameters of the filter (2.4), algorithm of the eigenvalue virtual substitution (3.2) and
identification laws (2.3), (3.5) were set as:

l = 100, ε = 0.4, ε = 10−10, γ0 = 5, γ1 = 1, Γ = I3. (4.2.5)

In order to provide the same convergence rate for the laws (3.5) and (2.7), the adaptive gain γ
of the law (2.7) was defined similarly to (3.5), following the method of the regressor excitation
normalization [18]:

γ (t) =







γ1, if ω (t) 6 min {λn
min (t) , ε

n}
γ0

ω2 (t)
otherwise.

(4.2.6)

First of all, it was shown that the convergence conditions of the laws (2.3), (2.7) and (3.5) were
met. Figure 12 presents the behaviour of the disturbance d (t) and regressor ϕ (t) rank in the course
of the experiment.

The time ranges [1; 1,165] and [2; 2,14], at which rank {ϕ (t)} = 3, were substantially shorter
than the time intervals, when rank {ϕ (t)} = 2. Therefore, unlike the experiment in Section 4.2.1,
in this one the rank of the regressor was time-invariant almost everywhere. The rank differed from
two when [1; 1,165] and [2; 2,14] as the filter (2.4) mixed information about regressors with different
bases. Considering (2.7), the convergence condition was satisfied over [1; 1,165] and [2; 2,14] due
to the mixing effect.

In turn, for the law (3.5) the necessary condition of convergence was satisfied for all t > 0.
According to Fig. 12, the number of parameter switches was finite j 6 jmax < ∞ and r > 1, and
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Fig. 13. Transient curves of the errors θ̃i (t) of the laws (3.5)—(a), (2.7)—(b) and (2.3)—(c).

then, by Assumption 3 and the results of Theorem 3 and Corollary 5, for (3.5) all necessary and
sufficient conditions of exponential convergence of the errors z̃ (t) and Θ̃ (t) to zero were satisfied.
Moreover, since

∀t ∈ [0; 1] d3 (t) = 0, ∀t ∈ [1; 2] d1 (t) = 0, ∀t ∈ [2; 3] d2 (t) = 0,

then the conditions of partial identifiability described in Proposition 2 were also met in the course
of the experiment.

Having verified that the convergence conditions were met, the experiments were conducted using
the algorithms (3.5), (2.7) and (2.3) under different initial conditions.

Firstly, it was set that θ0 =
[

0 −10 14
]T

, so the convergence conditions from Theorem 1 were

not met since
∥
∥
∥θ̃ (t+r )

∥
∥
∥ ≈ 4, 9, while θmax = ‖θ‖ ≈ 15.

Figure 13 depicts the transients of the errors θ̃i (t) for (3.5)—(a), (2.7)—(b) and (2.3)—(c).

The obtained transients confirmed the theoretical conclusions made in Remark 4. Indeed, un-
der the conditions of the second statement of Proposition 2, the law (3.5), in contrast to (2.7)
and (2.3), provided a monotonic decrease of the error θ̃i (t) over the corresponding time intervals
when di(t) = 0:

∣
∣
∣θ̃3 (1)

∣
∣
∣ 6 β

∣
∣
∣θ̃3 (0)

∣
∣
∣ ,

∣
∣
∣θ̃1 (2)

∣
∣
∣ 6 β

∣
∣
∣θ̃1 (1)

∣
∣
∣ ,

∣
∣
∣θ̃2 (3)

∣
∣
∣ 6 β

∣
∣
∣θ̃2 (2)

∣
∣
∣ , β ∈ (0; 1) .

Comparing the transients, the advantages of the law (3.5) is seen over (2.7) and (2.3). As
for (2.3), the law (3.5) ensured the first-order type transients of θ̃i (t) ∀i ∈ 1, n throughout the
experiment. Compared to (2.7), the law (3.5) converged not just over the time ranges [1;1,165] and
[2; 2,14], but for all t > 0.

Figure 14 depicts the transients of z̃ (t) for laws (3.5)—(a), (2.7)—(b) and (2.3)—(c).

The transients in Fig. 14 confirm the exponential recovery of the tracking error z̃ (t) to its
equilibrium point proved in Theorem 3 when ϕ (t) ∈ s-PE and Assumption 3 was met.
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Fig. 14. Transient curves of the error z̃ (t) of the laws (3.5)—(a), (2.7)—(b) and (2.3)—(c).

Fig. 15. Transient curve of the error Θ̃ (t) norm.

Figure 15 shows transient curve of the Θ̃ (t) norm.

Figure 15 validates the exponential recovery of the parameter error Θ̃ (t) to its equilibrium point
when ϕ (t) ∈ s-PE and Assumption 3 was met, which followed the conclusions made in Theorem 3.

Since the number of rank switches was finite j 6 jmax = 4 < ∞, then according to the results
of Corollary 5 the exponential recovery of the errors z̃ (t) and Θ̃ (t) to their equilibrium points is
equivalent to exponential stability.

Figure 16 presents transients of
∥
∥
∥θ̃ (t)

∥
∥
∥ for the laws (3.5), (2.7) and (2.3).

The simulation results shown in Fig. 16 validate the conclusions made in Theorem 1. In-

deed, when
∥
∥
∥θ̃ (t+r )

∥
∥
∥ < θmax, the law (3.5) was not convergent (when

∥
∥
∥θ̃ (t+r )

∥
∥
∥ = θmax, it was quasi-

convergent), and the error norm
∥
∥
∥θ̃ (t)

∥
∥
∥ could become greater than

∥
∥
∥θ̃ (t+r )

∥
∥
∥.

Then it was set that θ0 =
[

0 5 0
]T

, which, according to Theorem 1, ensured that sufficient

conditions of convergence of the law (3.5) were met:

β1 =
∥
∥
∥θ̃

(

t+r
)
∥
∥
∥ ‖θ‖−1 ≈ 18

15
= 1, 2;

1

β1
+ e−γ0δ =

1

1, 2
+ e−5·1 ≈ 0.84 ∈ (0; 1) .
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Fig. 16. Transient curves of
∥
∥θ̃ (t)

∥
∥ of the laws (3.5), (2.7) and (2.3).

Fig. 17. Transient curves of
∥
∥θ̃ (t)

∥
∥ of the laws (3.5), (2.7) and (2.3).

Figure 17 shows the transients of
∥
∥
∥θ̃ (t)

∥
∥
∥ obtained under such initial conditions, when the

laws (3.5), (2.7) and (2.3) were applied.

The transient of
∥
∥
∥θ̃ (t)

∥
∥
∥ for the law (3.5) confirmed the conclusions made in Theorem 1. The

goal (2.2) was achieved when ϕ (t) ∈ s-FE and sufficient conditions were met, and θ̃ (t) did expo-
nentially converge to the set with the bound θmax. Considering (2.7), such properties held only
when ϕ (t) ∈ FE.

Thus, the numerical experiments confirmed all theoretically stated properties of the proposed
law (3.5). The results of Section 3.1 are valid in the general case ϕ (t) ∈ s-FE, and the results of
Sections 3.2 and 3.3 are applicable under Assumptions 2 and 3, respectively.

5. CONCLUSION

In order to solve the identification problem of the unknown time-invariant parameters of a linear
regression equation under the regressor semi-finite excitation, a procedure of dynamic regressor
extension, regularization and mixing was proposed that generalized the well-known DREM method
and extended the area of its applicability as far as practical scenarios were concerned.

In contrast to the conventional gradient-based identification law (2.3), the proposed procedure
provided element-wise monotonicity of errors when Assumption 2 was met and exponential conver-
gence of the tracking error of the function (2.1) when the regressor was semi-persistently exciting
with the rank not less than one.

In contrast to the conventional DREM procedure, the developed one, firstly, relaxed the require-
ment of the regressor finite excitation previously required for convergence of (2.7) and ensured that
the unknown parameters identification error decreased when the weaker condition of the regressor
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semi-finite excitation was met, and secondly, guaranteed exponential convergence of the regres-
sand (2.1) tracking error when the regressor was semi-persistently exciting with the rank not less
than one.

The scope of future research is the analysis and development of the dynamic regressor extension,
regularization, and mixing procedure to solve the following problems:

—synthesis of the adaptive control schemes with relaxed requirements of the regressor excitation
to ensure exponential convergence of the reference model tracking error;

—development of adaptive state observers with relaxed regressor excitation requirements for
exponential convergence of plant states tracking error to zero;

—using partial identifiability conditions (see Proposition 2 and Fig. 13a, Fig. 7a, Fig. 2a) to
identify the full vector of plant unknown parameters in case of over-parameterization;

—based on Proposition 2 and simulation results (see Fig. 13a, Fig. 7a, Fig. 2a), development of
an identification law that does not require a finite or persistent excitation of the regressor
to provide exponential convergence of the identification error of the full vector of unknown
parameters.

APPENDIX

Proof of Proposition 1. The lower bounds of the regressor ω (t) are written on the basis of
Corollaries 1–4:

ϕ (t) ∈ PE ⇔ ∀t > kT ω (t) = det {Φ (t)} =
n∏

i=1

λi (t) > λn
min (t) > µn > 0,

ϕ (t) ∈ FE ⇔ ∀t ∈ [tδ; tδ + δ] ⊂ [
t+r ; te

]
ω (t) =

n∏

i=1

λi (t) > λn
min (t) > µn > 0,

ϕ (t) ∈ s-PE ⇔ ∀t > kT ω (t) = εr
r∏

i=1

λi (t) > min {λn
min (t) , ε

n} > 0,

ϕ (t) ∈ s-FE ⇔ ∀t ∈ [tδ; tδ + δ] ⊂ [
t+r ; te

]
ω (t) = εr

r∏

i=1

λi (t) > min {λn
min (t) , ε

n} > 0.

as was to be proved in Proposition 1.

Proof of Theorem 1. 1. As, following Corollaries 1 and 2, the following implications hold when
ϕ (t) ∈ FE/ϕ (t) ∈ PE:

ϕ (t) ∈ PE ⇔ ∀t > kT λmin (t) > µ > 0,

ϕ (t) ∈ FE ⇔ ∀t ∈ [tδ; tδ + δ] ⊂ [
t+r ; te

]
λmin (t) > µ > 0,

(A.1)

then, when ϕ (t) ∈ FE/ϕ (t) ∈ PE, in accordance with (3.2), zero eigenvalues in Λ (t) are not sub-
stituted Ξ (t) = 0n×n, the equality Φ (t) = ϕ (t) holds for the regressor matrix Φ (t), then it holds

for the unknown parameters Θ that Θ = θ owing to Λ
−1

(t) Ξ (t) = 0n×n, and the identification
law (3.5) coincides with (2.7) up to the definition of the adaptive gain γ, from which it follows
that (3.5) ensures b1–b5 when ϕ (t) ∈ FE/ϕ (t) ∈ PE.

2. The following function, in which time arguments are omitted for the sake of brevity, is
introduced:

∀t ∈ [
t+r ; te

]
L = θ̃Tθ̃. (A.2)
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The equation (A.2) is differentiated along the solutions of (3.5) to obtain:

L̇ = −2θ̃T
(

γω
(

ωθ̂ − ωθ + ωV Λ
−1

ΞV Tθ
))

= −2θ̃Tγω2θ̃ − 2θ̃Tγω2V Λ
−1

ΞV Tθ. (A.3)

Considering Assumption 1 and the definition of γ, the upper bound of (A.3) for all t ∈
[tδ; tδ + δ] ⊂ [t+r ; te] is written as:

L̇ 6 −2θ̃T
γ0
ω2

ω2θ̃ − 2θ̃T
γ0
ω2

ω2V Λ
−1

ΞV Tθ

6 −2θ̃Tγ0θ̃ − 2θ̃Tγ0V Λ
−1

ΞV Tθ 6 −2γ0
∥
∥
∥θ̃

∥
∥
∥

2
+ 2γ0

∥
∥
∥θ̃

∥
∥
∥ θmax.

(A.4)

Here spectral norm of the multiplier V Λ
−1

ΞV T, which value is one as the matrices V and V T

are orthogonal ones, is calculated to obtain (A.4).

Assuming that a =
√
2γ0

∥
∥
∥θ̃

∥
∥
∥ , b =

√
2γ0θmax and using the inequality −a2 + ab 6 −1

2a
2 + 1

2b
2,

it is obtained from (A.4):

L̇ 6 −γ0
∥
∥
∥θ̃

∥
∥
∥

2
+ γ0θ

2
max. (A.5)

The solution of the differential inequality (A.5) for all t ∈ [tδ; tδ + δ] is written as:

∀t ∈ [tδ; tδ + δ] L 6 e−γ0(t−tδ)
∥
∥
∥θ̃ (tδ)

∥
∥
∥

2
+ θ2max. (A.6)

Considering (A.6), L =
∥
∥
∥θ̃

∥
∥
∥

2
and the fact that for all c, d the inequalities

√
c2 + d2 6

√
c2+

√
d2

hold, we obtain:
∥
∥
∥θ̃ (tδ + δ)

∥
∥
∥ 6 e−0.5γ0δ

∥
∥
∥θ̃ (tδ)

∥
∥
∥+ θmax. (A.7)

As for the most conservative case, it holds that ω (t) ≡ 0 for all t ∈ {[t+r ; tδ] , [tδ + δ; te]}, there-
fore, the inequalities

∥
∥
∥θ̃ (t+r )

∥
∥
∥ >

∥
∥
∥θ̃ (tδ)

∥
∥
∥,

∥
∥
∥θ̃ (te)

∥
∥
∥ 6

∥
∥
∥θ̃ (tδ + δ)

∥
∥
∥ also hold, using which (A.7) is

rewritten as:
∥
∥
∥θ̃ (te)

∥
∥
∥ 6 e−0.5γ0δ

∥
∥
∥θ̃

(

t+r
)
∥
∥
∥+ θmax. (A.8)

The premise 2.1) is substituted into (A.8) to obtain:

∥
∥
∥θ̃ (te)

∥
∥
∥ 6

(

e−0.5γ0δ +
1

β1

)∥
∥
∥θ̃

(
t+r

)
∥
∥
∥ . (A.9)

Hence, the choice of γ0 on the basis of the condition

0 < e−0.5γ0δ +
1

β1
< 1 ⇔ γ0 >

−2ln
(

1− 1
β1

)

δ
(A.10)

allows one to ensure that the premise 2.2) also holds and, as a consequence, obtain the following:

∥
∥
∥θ̃ (te)

∥
∥
∥ 6

(

e−0.5γ0δ +
1

β1

)

︸ ︷︷ ︸

0<β<1

∥
∥
∥θ̃

(

t+r
)
∥
∥
∥ ,

(A.11)

which means that the error θ̃ (t) decreases over the time range [t+r ; te].
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The substitution of (A.11) into the upper bound of z̃ (te) yields:

|z̃ (te)| 6 ϕmax

∥
∥
∥θ̃ (te)

∥
∥
∥ 6 ϕmaxβ

∥
∥
∥θ̃

(
t+r

)
∥
∥
∥ = β

∣
∣z̃

(
t+r

)∣
∣ , (A.12)

which completes the proof of the second statement and verifies the convergence of (3.5) when
ϕ (t) ∈ s-FE and the premises 2.1) and 2.2) hold.

3. The derivative of Θ̃ (t) is calculated to prove the third statement:

˙̃Θ (t) = −γ (t)ω2 (t) Θ̃ (t)− Θ̇ (t) . (A.13)

The general solution of the differential equation (A.13) is:

Θ̃ (t) = φ (t, t0) Θ̃ (t0)−
t∫

t0

φ (t, τ) Θ̇ (τ) dτ , (A.14)

where φ (t, s) = e
−

t∫

s

γ(τ)ω2(τ)dτ

.

As, owing to
√
γ1 /∈ L2,

√
γ0

ω(t) /∈ L2 and ω (t) /∈ L2, for all possible switches of the nonlinear oper-

ator in (3.5) it is true that
√
γω (t) /∈ L2, then the function φ (t, s) has the following properties:

√
γω (t) /∈ L2 ⇔







0 < φ (t, s) 6 1,

lim
t→∞

φ (t, s) = 0.
(A.15)

Using the first property, the upper bound of (A.14) is obtained:

Θ̃ (t) 6 φ (t, t0) Θ̃ (t0)−Θ(t) . (A.16)

On the basis of (A.16) and definitions Θ̃ (t) = θ̃ (t) + d (t) , Θ (t) = θ − d (t) we have:

θ̃ (t) 6 φ (t, t0) Θ̃ (t0)− θ. (A.17)

From this, based on the second property of (A.15), it follows that limt→∞
∥
∥
∥θ̃ (t)

∥
∥
∥ 6 θmax, which

completes the proof of the third statement of the theorem.

4. When the condition ϕ (t) ∈ s-PE is met, in accordance with the third statement of Proposi-
tion 1 for all t > kT it holds that ω (t) > min {λn

min (t) , ε
n} > 0 and, consequently, the function

φ (t, kT ) is written as:

φ (t, kT ) = e−γ0(t−kT ). (A.18)

Then, having solved (A.13) for all t > kT , the following is obtained in a similar manner to
(A.14)–(A.17):

∥
∥
∥θ̃ (t)

∥
∥
∥ 6 e−γ0(t−kT )

∥
∥
∥Θ̃ (kT )

∥
∥
∥+ θmax, (A.19)

from which it follows that, when ϕ (t) ∈ s-PE, the errors θ̃ (t) exponentially convergence to the set
with the bound θmax, which completes the proof of the theorem.
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Proof of Theorem 2. I. To prove the first statement of Theorem 2, the equation (3.4) is written
in the element-wise form:

Υi (t) = ω (t)Θi, ∀i ∈ {1, . . . , n} . (A.20)

Given (A.20), the law (3.5) for all i ∈ {1, . . . , n} is written as follows:

˙̂
θi (t) =

˙̃Θi (t) = −γ (t)ω (t)
(

ω (t) θ̂i (t)− ω (t)Θi

)

= − γ (t)ω2 (t) Θ̃i (t) . (A.21)

As γ (t)ω2 (t) > 0, then sign
{
˙̃Θi (t)

}

= const, and it holds for Θ̃i (t) that
∣
∣
∣Θ̃i (ta)

∣
∣
∣ 6

∣
∣
∣Θ̃i (tb)

∣
∣
∣

∀ta > tb, which was to be proved in part I of the theorem.

II. When ϕ (t) ∈ s-FE and Assumption 2 is met, in accordance with Corollary 4 the solution of
the equation (A.13) over [tδ; tδ + δ] is written as:

Θ̃ (t) = φ (t, tδ) Θ̃ (tδ) = e−γ0(t−tδ)Θ̃ (tδ) . (A.22)

Considering the most conservative case, for all t ∈ {[t+r ; tδ] , [tδ + δ; te]} it holds that ω (t) ≡ 0,

therefore we have the inequalities
∥
∥
∥Θ̃ (t+r )

∥
∥
∥ >

∥
∥
∥Θ̃ (tδ)

∥
∥
∥,

∥
∥
∥Θ̃ (te)

∥
∥
∥ 6

∥
∥
∥Θ̃ (tδ + δ)

∥
∥
∥, on the base of which

the upper bound of Θ̃ (t) at the time instant te is obtained:

∥
∥
∥Θ̃ (te)

∥
∥
∥ 6 e−γ0δ

∥
∥
∥Θ̃

(
t+r

)
∥
∥
∥ . (A.23)

The definition β = e−γ0δ ∈ (0; 1) is introduced into (A.23) to complete the proof that the er-
ror Θ̃ (t) decreases over [t+r ; te].

To prove the error z̃(t) reduction, the correctness of the following implication owing to V T
1 (t)V2 =

0r×r is taken into consideration:

y (t) = ϕ (t) θ = V1 (t)Λ1 (t)V
T
1 (t)

(

θ − V2V
T
2 θ

)

= ϕ (t)
(

θ − V2V
T
2 θ

)

= ϕ (t)Θ =

t∫

t+
0

e−l(t−τ)ϕ (τ)ϕT (τ) dτΘ =

t∫

t+
0

e−l(t−τ)ϕ (τ) z (τ) dτ

=

t∫

t+
0

e−l(t−τ )ϕ (τ)ϕT (τ) θ
︸ ︷︷ ︸

z(τ)

dτ =

t∫

t+
0

e−l(t−τ)ϕ (τ)ϕT (τ)Θ
︸ ︷︷ ︸

z(τ)

dτ

m
z (t) = ϕT (t) θ = ϕT (t)

(

θ − V2V
T
2 θ

)

= ϕT (t)Θ.

(A.24)

Then, considering (A.22), the upper bound of the tracking error is written as:

∀t ∈ [tδ; tδ + δ] |z̃ (t)| 6 ϕmaxe
−γ0(t−tδ)

∥
∥
∥Θ̃ (tδ)

∥
∥
∥ , (A.25)

from which, owing to (A.23), we immediately have:

|z̃ (te)| 6 ϕmaxβ
∥
∥
∥Θ̃

(
t+r

)
∥
∥
∥ = β

∣
∣z̃

(
t+r

)∣
∣ , (A.26)

which was to be proved in part II.
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III. When Assumption 2 is met, for all t ∈ [t0; ∞) the solution of the error (A.13) is written as:

Θ̃ (t) = φ (t, t0) Θ̃ (t0) , (A.27)

from which, according to the second property of (A.15), it follows that:

√

γ (t)ω (t) /∈ L2 ⇔ limt→∞
∥
∥
∥Θ̃ (t)

∥
∥
∥ = 0, (A.28)

which holds for all possible variants of switches of the nonlinear operator (3.5) owing to
√
γ1 /∈ L2,√

γ0
ω(t) /∈ L2 and ω (t) /∈ L2.

Having applied the implication (A.28) to obtain the upper bound of (A.24), we have:

√

γ (t)ω (t) /∈ L2 ⇔ limt→∞ |z̃ (t)| 6 limt→∞
(

ϕmax

∥
∥
∥Θ̃ (t)

∥
∥
∥

)

= 0. (A.29)

Thus, all statements of the third part of Theorem 2 are proved.

IV.When ϕ (t) ∈ s-PE, then (A.18) holds ∀t > kT , and therefore the following bound is obtained
on the basis of (A.22):

∀t > kT
∥
∥
∥Θ̃ (t)

∥
∥
∥ 6 e−γ0(t−kT )

∥
∥
∥Θ̃ (kT )

∥
∥
∥ , (A.30)

which proves the exponential convergence of the error Θ̃ (t) to zero for all t > kT .

Having (A.30) at hand, considering the boundedness of ‖ϕ (t)‖ 6 ϕmax and using (A.24), the
exponential convergence of the error z̃ (t) for all t > kT can be proved in the similar way to (A.25),
which completes the proof of Theorem 2.

Proof of Theorem 3. When ϕ (t) ∈ s-PE, on the basis of the third statement of proved Propo-
sition 1 for all t > kT ω (t) > min {λn

min (t) , ε
n} > 0 holds, and therefore the equation (A.13) is

written as:

∀t > kT ˙̃Θ (t) = −γ0Θ̃ (t)− Θ̇ (t) . (A.31)

Owing to Assumption 3, the derivative Θ̇ (t) is written as follows according to (3.7):

Θ̇ (t) =
∞∑

j=1

∆jδ (t− tj). (A.32)

Considering (A.32), the solution of the differential equation (A.31) is obtained:

∀t > kT Θ̃ (t) = e−γ0(t−kT )Θ̃ (kT )−
t∫

kT

e−γ0(t−τ)
∞∑

j=1

∆jδ (τ − tj)dτ. (A.33)

Following the sifting property of the Dirac function, for any differentiable function f (t) we have:

t∫

t0

f (τ) δ (τ − tj) dτ = f (tj)h (τ − tj)|tt0

= f (tj)h (t− tj)− f (tj)h (t0 − tj)
︸ ︷︷ ︸

=0

≡ f (tj)h (t− tj) .

(A.34)
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On the basis of (A.34) the equation (A.33) is rewritten as:

∀t > kT Θ̃ (t) = e−γ0(t−kT )Θ̃ (kT )−
∞∑

j=1

e−γ0(t−tj)∆jh (t− tj). (A.35)

Having multiplied (A.35) by Θ̃T (kT ), it is obtained:

∀t > kT Θ̃T (kT ) Θ̃ (t) = e−γ0(t−kT )
∥
∥
∥Θ̃ (kT )

∥
∥
∥

2

−
∞∑

j=1

e−γ0(t−tj)Θ̃T (kT )∆jh (t− tj).
(A.36)

The term e−γ0(t−kT )
∥
∥
∥Θ̃ (kT )

∥
∥
∥

2
is put outside the brackets in the right-hand side of the equa-

tion (A.36) to obtain for all t > kT that:

Θ̃T (kT ) Θ̃ (t) =




1− 1

∥
∥
∥Θ̃ (kT )

∥
∥
∥

2

∞∑

j=1

e−γ0(kT−tj)Θ̃T (kT )∆jh (t− tj)






︸ ︷︷ ︸

∈R

× e−γ0(t−kT )Θ̃T (kT ) Θ̃ (kT ) ,

Θ̃ (t) =




1− 1

∥
∥
∥Θ̃ (kT )

∥
∥
∥

2

∞∑

j=1

e−γ0(kT−tj)Θ̃T (kT )∆jh (t− tj)




 e−γ0(t−kT )Θ̃ (kT ) ,

(A.37)

where
∥
∥
∥Θ̃ (kT )

∥
∥
∥ 6= 0 since for all t ∈ [t0; kT ) ω (t) ≡ 0 ⇒ ˙̂

θ (t) = 0 ⇒
∥
∥
∥Θ̃ (kT )

∥
∥
∥ >

∥
∥
∥Θ̃ (t0)

∥
∥
∥ .

The equation (A.37) allows one to have the first expression from (3.8) up to the following
notation:

a (tj) =

∣
∣
∣
∣
∣
∣
∣

1− 1
∥
∥
∥Θ̃ (kT )

∥
∥
∥

2

∞∑

j=1

e−γ0(kT−tj)Θ̃T (kT )∆jh (t− tj)

∣
∣
∣
∣
∣
∣
∣

. (A.38)

So the exponential recovery of the parameter error Θ̃ (t) to its equilibrium point is proved.

Having (A.24) at hand, the upper bound of the tracking error |z̃ (t)| is written as:

∀t > kT |z̃ (t)| 6 a (tj)ϕmaxe
−γ0(t−kT )

∥
∥
∥Θ̃ (kT )

∥
∥
∥ = a (tj) e

−γ0(t−kT ) |z̃ (kT )| . (A.39)

Therefore, the exponential recovery of the error z̃ (t) to its equilibrium point is also proved.

If, additionally, for a (tj) there exists an upper bound amax, then it is immediately obtained
from (3.8) that:







lim
t→∞

∥
∥
∥Θ̃ (t)

∥
∥
∥ 6 lim

t→∞

(

amaxe
−γ0(t−kT )

∥
∥
∥Θ̃ (kT )

∥
∥
∥

)

= 0,

lim
t→∞

|z̃ (t)| 6 lim
t→∞

(

amaxϕmaxe
−γ0(t−kT )

∥
∥
∥Θ̃ (kT )

∥
∥
∥

)

= lim
t→∞

(

amaxe
−γ0(t−kT ) |z̃ (kT )|

)

= 0.

(A.40)

Hence, the tracking error z̃ (t) and the parameter error Θ̃ (t) are exponentially stable, which
completes the proof of Theorem 3.
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Proof of Corollary 5. According to the first statement of Corollary 5, it is assumed that the
number of Θ (t) changes is finite: j 6 jmax < ∞.

Then the following upper bound of the function a (tj) is obtained:

a (tj) =

∣
∣
∣
∣
∣
∣
∣

1− 1
∥
∥
∥Θ̃ (kT )

∥
∥
∥

2

jmax∑

j=1

e−γ0(kT−tj)Θ̃T (kT )∆jh (t− tj)

∣
∣
∣
∣
∣
∣
∣

6 1 +

∣
∣
∣
∣
∣
∣
∣

1
∥
∥
∥Θ̃ (kT )

∥
∥
∥

2

jmax∑

j=1

e−γ0(kT−tj)Θ̃T (kT )∆jh (t− tj)

∣
∣
∣
∣
∣
∣
∣

6 1 +
1

∥
∥
∥Θ̃ (kT )

∥
∥
∥

jmax∑

j=1

‖∆j‖ e−γ0(kT−tj)h (t− tj).

(A.41)

As, when j is finite, the number of time instants tj is also finite, then the exponential multiplier
in the sum (A.41) is bounded, and the following definition holds:

a (tj) 6 1 +
1

∥
∥
∥Θ̃ (kT )

∥
∥
∥

jmax∑

j=1

‖∆j‖ e−γ0(kT−tj)h (t− tj) = amax, (A.42)

which was to be proved in the first part of the corollary.

To prove the second statement of the Corollary, the upper bound of ‖∆j‖ is taken into consid-
eration, and the upper bound of a (tj) is obtained similarly to (A.42), but under the condition of
the infinite number of switches:

a (tj) 6 1 +

∣
∣
∣
∣
∣
∣
∣

1
∥
∥
∥Θ̃ (kT )

∥
∥
∥

2

∞∑

j=1

e−γ0(kT−tj)Θ̃T (kT )∆jh (t− tj)

∣
∣
∣
∣
∣
∣
∣

6 1 +
∞∑

j=1

c (tj) h (t− tj). (A.43)

The series from (A.43) is of positive terms, and all its subsums are bounded because of mono-

tonicity 0 < c (tj+1) 6 c (tj), and therefore 1 +
∞∑

j=1
c (tj) h (t− tj) 6 amax, which completes the proof

of Corollary 5.

Proof of Proposition 2. As, when ϕ (t) ∈ FE/ϕ (t) ∈ PE, the following implications hold accord-
ing to Corollaries 1 and 2:

ϕ (t) ∈ PE ⇔ ∀t > kT λmin (t) > µ > 0,

ϕ (t) ∈ FE ⇔ ∀t ∈ [tδ; tδ + δ] ⊂ [
t+r ; te

]
λmin (t) > µ > 0,

then, when ε = 0, according to (3.3) we have Ξ (t) = 0n×n, as a result Λ
−1

(t) Ξ (t) = 0n×n and,
consequently, ϕ (t) ∈ FE/ϕ (t) ∈ PE ⇒ d (t) = 0n ⇒ Θ(t) = θ, which completes the proof of
statement (a) of Proposition 2.

The necessity of conditions ϕ(t)∈ s−FE/ϕ(t)∈ s-PE follows from the fact that only if 0<r<n,

the premises of the statement b) are consistent (∃p > 0
n−p∑

i=1
wiϕi (t) = 0n, wi 6= 0). The necessity
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of the condition n > 2 follows from the contradiction, which occurs when n = 2 in general case
(ϕ1 (t) 6= 0n):

w1ϕ1 (t) + w2ϕ2 (t) = 0n w1 6= 0, w2 = 0.

The next step is to prove the necessity and sufficiency of the following condition to ensure that
∃M ⊂ {1, . . . , n} , |M | = p, ∀i ∈ M , Θi = θi :

n−p
∑

i=1

wiϕi (t) +
n∑

j=n−p+1

wjϕj (t) = 0n, wi 6= 0, wj = 0. (A.44)

Necessity. To begin with, it should be noted that according to (3.5), the elements of the vector
of new unknown parameters Θ coincide with the elements of the vector of original parameters θ if
the corresponding elements of the vector d are equal to zero. Therefore, d is considered in more

detail. If r > 0, the multiplication Λ
−1

(t) Ξ (t) has the following structure:

Λ
−1

(t) Ξ (t) =

[

Λ−1
1 (t) 0r×r

0r×r ε−1Ir

][

0r 0r×r

0r×r εIr

]

=

[

0r 0r×r

0r×r Ir

]

. (A.45)

Then, owing to the notation (3.4), the definition of d is rewritten as:

d = V (t)Λ
−1

(t) Ξ (t)V T (t) θ = V2V
T
2 θ = [d1 . . . di . . . dn]

T, (A.46)

from which it follows that d has p zero elements if, in particular, the number of zero rows and
columns of the matrix V2V

T
2 is p, which, in turn, is satisfied when the matrix V2 has p zero rows.

Following the definition of the singular decomposition of a positively semi-definite symmetric
matrix [15, 16], the matrix V2 can be obtained as a solution of a homogeneous system of linear
algebraic equations:

ϕ (t)V k
2 =

n∑

i=1

vki ϕi (t) = 0n, ∀k ∈ {1, r} , (A.47)

where V k
2 is the kth column of the matrix V2.

To prove the necessity of the condition (A.44), it is to be shown that if wj 6= 0, then the vector V k
2 ,

∀k ∈ {1, r} , does not contain zero elements.

The expression (A.47) can be rewritten in the following equivalent form (taking into account
the orthonormality of V k

2 , ∀k ∈ {1, r}):

ϕ (t)V k
2 =

n∑

i=1

vki ϕi (t) =
1

√
n∑

i=1
w2
i

n∑

i=1

wiϕi (t)

=
1

√
n∑

i=1
w2
i





n−p
∑

i=1

wiϕi (t) +
n∑

j=n−p+1

wjϕj (t)





=
n−p
∑

i=1

vki ϕi (t) +
n∑

j=n−p+1

vkjϕj (t) = 0n.

(A.48)
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Since we consider only nontrivial solutions to find V k
2 , if the condition (A.44) is not satisfied,

the set of solutions is given as follows:

vki =
wi

√
n∑

i=1
w2
i

6= 0; vkj =
wj

√
n∑

i=1
w2
i

6= 0,

and then V k
2 , ∀k ∈ {1, r} , does not include zero elements and, consequently, ∄di = 0 ⇒ ∄M ⊂

{1, . . . , n} , |M | = p, ∀i ∈ M , Θi = θi, which completes the proof of necessity of the condi-
tion (A.45).

Sufficiency. Following the statement of the proposition, when the condition (A.44) is met, the
solution set of the equation of the form (A.47) is defined as follows:

vki =
wi

√
n∑

i=1
w2
i

6= 0; vkj =
wj

√
n∑

i=1
w2
i

= 0,

and then the vector V k
2 , ∀k ∈ {1, r} , includes p zero elements and, consequently, ∃M ⊂ {1, . . . , n},

|M | = p, ∀i ∈ M , Θi = θi, which completes the proof of sufficiency of the condition (A.44).

Thus, the condition (A.44) is necessary and sufficient for the identifiability of p elements of the
unknown parameters vector θ, which completes the proof of the second statement of Proposition 2.
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