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1. INTRODUCTION

Stability analysis of mechanical systems under given forces and their stabilization by available
control forces are topical problems in the modern theory of control [1–5]. If the forces acting on a
system are highly nonlinear, i.e., their power series expansions in terms of the generalized coordi-
nates or velocities contain no linear terms, Lyapunov’s direct method is a basic stability analysis
tool. In the case of time-delay systems, this method is based either on the Razumikhin approach
or Lyapunov–Krasovskii functionals [6–8]. However, note that for highly nonlinear systems, the
construction of Lyapunov functions and Lyapunov–Krasovskii functionals becomes considerably
more complicated.

The decomposition method is an effective way for solving this problem. The method investigates
the properties of solutions of high-dimensional differential systems by analyzing the properties of
reduced-dimension subsystems extracted from an original system [1, 9–11]. It is widely and suc-
cessfully applied to analyze stability and stabilize mechanical systems. For example, this method
was used to design control laws in electromechanical and robotic systems [12–16], track the trajec-
tories of mechanical systems [17], design angular orientation control laws for spacecraft [18], and
transfer a controlled Lagrangian system from an arbitrary initial state to a given terminal state in a
finite time [2]. The monograph [9] considered a mechanical system described by linear autonomous
differential equations of the second order; as demonstrated therein, its stability can be analyzed
by studying the stability of two isolated subsystems described by first-order differential equations.
This result was further developed in the publications [19–22].

Time-delay systems are an important and widespread class of dynamical systems found in me-
chanics due to nonlinear hysteresis-type effects, material shape memory effects, and finite signal
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propagation in control systems [6–8, 23]. Moreover, delay (in particular, distributed delay) can be
deliberately introduced into controlled mechanical systems as the integral part of the PID controller
to improve their transient characteristics [4, 24, 25].

Control systems with distributed delays were considered in [4, 24–29]; stability conditions based
on Lyapunov–Krasovskii functionals were obtained, with both negative definite and sign-constant
derivatives. The paper [30] investigated the stability of linear controlled mechanical systems with
a distributed delay in positional forces using the decomposition method. The stability analysis
involved the assumption of a large parametric coefficient at the vector of generalized velocities-
dependent forces.

The novelty of this paper consists both in the problem statement and in the solution approaches.
We consider a mechanical system under positional forces with a highly nonlinear dependence on
the generalized coordinates with distributed-delay terms and other forces with a linear dependence
on the generalized velocities. We adopt special Lyapunov–Krasovskii functionals of the full type [6]
and the decomposition method to prove asymptotic stability conditions of system equilibria. As
established below, for the system with highly nonlinear positional forces, stability conditions can
be presented in a more simple and constructive form compared to the linear case [30].

2. PROBLEM STATEMENT

Consider a dynamic mechanical system described by the equations

Aq̈(t) +Bq̇(t) +Q(q(t)) +

t∫

t−τ

D(q(ξ))dξ = 0, (1)

with the following notations: q(t) and q̇(t) are the n-dimensional vectors of generalized coordinates
and generalized velocities, respectively; A and B are constant matrices of compatible dimensions;
Q(q) and D(q) are continuous vector functions of the variable q ∈ R

n; finally, τ is a fixed positive
delay. Thus, the system has linear velocity forces and (generally speaking) nonlinear positional
forces with distributed-delay terms.

Each solution q(t, t0, χ), t > t0, of system (1) is defined by an initial time instant t0 > 0 and
an initial function χ(ξ), where χ(ξ) belongs to the space C1([−τ, 0],Rn) of all continuously dif-
ferentiable functions with the uniform norm ‖χ‖τ = maxξ∈[−τ,0] (‖χ(ξ)‖ + ‖χ̇(ξ)‖) and ‖ · ‖ is the
Euclidean vector norm. We denote by qt(t0, χ) the solution segment: qt(t0, χ) : ξ → q(t+ ξ, t0, χ),
ξ ∈ [−τ, 0].

Assume that Q(0) = D(0) = 0. Hence, this system has the trivial equilibrium

q = q̇ = 0. (2)

The goal of this paper is to obtain asymptotic stability conditions for this equilibrium.

Note that in the paper [30], such a problem was solved for the case of linear positional forces.
Stability was analyzed using the decomposition approach to mechanical systems [9, 19–21]. How-
ever, the conditions derived in [30] involve some system of linear matrix inequalities (LMIs) and
ensure the asymptotic stability of the equilibrium only under a large parametric coefficient at
velocity forces.

This paper considers the case of highly nonlinear positional forces. In addition to the decom-
position method, we employ an approach based on constructing a special Lyapunov–Krasovskii
functional of the full type [6]. As shown below, in contrast to the linear case, the asymptotic
stability of the system with highly nonlinear positional forces does not require a large parametric
coefficient at velocity forces. Moreover, the stability conditions are written in a simpler and more
constructive form. The results are applied to the monoaxial stabilization of a solid body.
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3. CONSTRUCTION OF THE LYAPUNOV–KRASOVSKII FUNCTIONAL
OF THE FULL TYPE

Let system (1) have the representation

Aq̈(t) +Bq̇(t) +
∂Π(q(t))

∂q
+ P (q(t))q(t) +

t∫

t−τ

∂Π̃(q(ξ))

∂q
dξ = 0, q ∈ R

n. (3)

Here, A and B are symmetric and positive definite matrices, Π(q) and Π̃(q) are continuously differ-
entiable and homogeneous functions of order µ+ 1 > 2, and P (q) is a continuous skew-symmetric
matrix such that

‖P (q)‖ 6 p0‖q‖σ−1, q ∈ R
n, (4)

where constants p0 and σ satisfy the conditions p0 > 0 and σ > 1.

Thus, in the case under consideration, A is a symmetric and positive definite matrix of inertial
system characteristics, and the linear velocity forces are dissipative. In addition, according to the
canonical structure theorem of force fields [31], the nonlinear positional forces are represented as the
sums of potential and nonconservative components; for the vector function under the integration
sign, the nonconservative component is zero.

As is known [21], if

Π̃(q) ≡ 0, (5)

the equilibrium (2) is asymptotically stable under the following sufficient conditions: the func-
tion Π(q) is positive definite, whereas the parameter σ satisfies the inequality

2σ > µ+ 1. (6)

We investigate the stability of this equilibrium provided that identity (5) fails.

Theorem 1. If µ > 1, the function Π(q) + τ Π̃(q) is positive definite, and inequality (6) holds,

then the equilibrium (2) of system (3) is asymptotically stable.

The proofs of all theorems of this paper are given in the Appendix.

Remark 1. Theorem 1 provides a constructive way to stabilize the mechanical system by choos-
ing positional forces with a distributed delay. It is important that the potential energy Π(q) of
the system may be non-positive definite, and the order of the nonconservative forces may be less
than the homogeneity order of the vector functions ∂Π(q)/∂q and ∂Π̃(q)/∂q. Note that for linear
systems, this stabilization process yields more rigid and less constructive conditions on the choice
of the integrand term; for details, see [8, 25, 30].

The Lyapunov–Krasovskii functional (A.1) (see the proof of Theorem 1) serves for showing
the asymptotic stability of the equilibrium of system (3) and, moreover, estimating the rate of
convergence of the solutions to the equilibrium.

Indeed, due to (A.2) and (A.3), this functional satisfies the differential inequality

V̇ 6 −c̃ V
µ+1

2 , c̃ = const > 0,

for ‖qt‖ < δ. Integrating it, we arrive at the following result.
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Corollary 1. Under the conditions of Theorem 1, there exist positive numbers d1, d2, d3, and δ̃
such that if the initial data of the solution q(t, t0, χ) of system (3) satisfy t0 > 0 and ‖χ‖τ < δ̃, then

‖q(t, t0, χ)‖ 6 d1‖χ‖τ
(
1 + d3‖χ‖µ−1

τ (t− t0)
)− 1

µ−1 ,

‖q̇(t, t0, χ)‖ 6 d2‖χ‖τ
(
1 + d3‖χ‖µ−1

τ (t− t0)
)− 1

µ−1

for all t > t0.

4. STABILITY ANALYSIS BASED ON DECOMPOSITION

Now consider the case where the matrices A and B in system (1) are constant without any
special structure (in contrast to the previous section, they are not assumed symmetric and positive
definite) and the vector functions Q(q) and D(q) are continuous for q ∈ R

n and homogeneous of
an order µ > 1. To analyze the stability of such a system, we apply the decomposition method as
proposed in [9, 19–22].

We construct the isolated subsystems without delay:

Aẋ(t) = −Bx(t), (7)

Bẏ(t) = −Q(y(t))− τD(y(t)). (8)

Theorem 2. If µ > 1 and the trivial solutions of subsystems (7) and (8) are asymptotically stable,

then the trivial equilibrium (2) of system (1) is asymptotically stable as well.

Remark 2. Like Theorem 1, this theorem provides a constructive way to stabilize the mechanical
system by choosing the integrand function in the distributed-delay term. The Lyapunov–Krasovskii
functional constructed in its proof also serves for estimating the rate of convergence of the solutions
to the equilibrium.

5. MONOAXIAL STABILIZATION OF A SOLID BODY

The differential systems (1) and (3) have a typical structure for mathematical models describing a
rich variety of mechanical systems. Nevertheless, many important applications lead to mathematical
models in which the differential equations of motion are resolved with respect to the first derivatives.
Despite this circumstance, the developed approaches can still be used for such models. Among them,
we mention the dynamics of objects approximated by a solid body rotating relative to its center
of mass. This section is devoted to one such problem: the developed approaches are successfully
applied to the monoaxial stabilization of a solid body in space.

Consider a solid body rotating relative to its center of mass (point O) with an angular velocity ω.
Let Oxyz be the system of principal central axes of inertia rigidly connected with the body, and
let Θ = diag (J1, J2, J3) be the tensor of inertia of the body in these axes. The dynamic Euler
equations describing the body’s rotational motion under the control moment Mu have the form

Θ ω̇(t) + ω(t)× (Θω(t)) =Mu. (9)

Passing to the monoaxial stabilization of the body, we introduce two unit vectors: r, stationary
in the coordinate system Oxyz, and s, stationary in the inertial space. By the theorem on the total
and local derivatives, we have the kinematic Poisson equation

ṡ(t) + ω(t)× s(t) = 0 (10)
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for the unit vector s. Together with equations (9), it forms a closed differential system. The
monoaxial stabilization problem for the solid body [32] is to find the control moment Mu ensuring
the existence and asymptotic stability of the solution

s = r, ω = 0 (11)

for system (9), (10). This solution corresponds to the equilibrium of the body’s axis.

As proved in [32], this problem can be solved using the control moment

Mu = −a‖s(t)− r‖µ−1s(t)× r − Fω(t).

Here, the first and second components are the restoring and dissipative moments, respectively. In
addition, a > 0, µ > 1, and F is a constant and positive definite matrix. A similar problem from
the class of nonlinear dynamic problems [5, 33], however differing by the linear control moment
and the noninertial base coordinate system, was considered in [36]. (Such coordinate systems are
widely used in cosmodynamics [34, 35] along with inertial coordinate systems.) To smoothen the
transients, a fundamentally important requirement for some satellite attitude control problems (in
particular, under almost resonant conditions [34, 37]), the authors [36] applied a distributed-delay
control law (the integral term), which proved to be effective.

Let us adopt the same approach to the current problem. For this purpose, we introduce the
additional moment

Mτ = b

t∫

t−τ

‖s(ξ)− r‖µ−1s(ξ)× r dξ

with a fixed coefficient b and a fixed positive delay τ into the control system with the moment Mu.
Then the Euler equations take the form

Θω̇(t) + ω(t)× (Θω(t)) = −Fω(t)− a‖s(t)− r‖µ−1s(t)× r (12)

+ b

t∫

t−τ

‖s(ξ)− r‖µ−1s(ξ)× r dξ.

Assume that the initial functions χ(ξ) for system (10), (12) belong to the space C([−τ, 0],R6) of
all continuous functions with the uniform norm ‖χ‖τ = maxξ∈[−τ,0] ‖χ(ξ)‖. It is required to obtain
asymptotic stability conditions of the equilibrium of system (10), (12). Such a problem was solved
in [30] for the linear (µ = 1) restoring moment and the linear moment Mτ . As proved therein, the
monoaxial stabilization of the body can be ensured if

|b|τ < a (13)

and the dissipative component of the control moment has a sufficiently large and positive coefficient.

This section shows that with a highly nonlinear (µ > 1) restoring moment and a highly nonlinear
moment Mτ , the monoaxial stabilization of the solid body can be ensured under rigid constraints
on the system parameters. In particular, the relaxation of requirements for the dissipative moment
plays a crucial role in attitude stabilization problems for artificial Earth satellites: the creation of
dissipative moments in space conditions is a difficult task.

Theorem 3. Let µ > 1. Then the inequality

bτ < a (14)

ensures the asymptotic stability of the equilibrium (11) of system (10), (12).
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Remark 3. Compared to condition (13), inequality (14) defines a wider range of admissible values
of the system parameters, and Theorem 3 does not require a large parametric coefficient at the
moment of dissipative forces. Moreover, in contrast to the linear case (see [30]), Theorem 3 leads to
the following interesting result: with a highly nonlinear moment Mτ , the monoaxial stabilization
of the body can be ensured for a = 0 and b < 0 (i.e., when no restoring moment acts on the body).

6. COMPUTER SIMULATION

Consider a solid body with the moments of inertia J1 = 5, J2 = 6, and J3 = 4. Hereinafter,
all physical quantities have units of measurement in the SI system. The problem consists in the
monoaxial stabilization of the body in the inertial coordinate system in the equilibrium (11) with

r =
(
1/
√
3, 1/

√
3, 1/

√
3
)⊤

. This problem can be solved using the control law described in the

previous section (equations (10) and (12)).

Let F = h · diag (1, 1, 1), h = 0.7, a = 2, b = 2, and τ = 0.9. For µ = 1 (the case of linear posi-
tional forces), we obtain the example considered in the paper [30]. By analogy with [30], assume
that the solid body deviates from the equilibrium so that for t ∈ [−τ, 0], the roll, pitch, and yaw an-
gles (“aircraft” angles) are ϕ(t) = 0.5, θ(t) = 0.6, and ψ(t) = −0.8, respectively, and the projections
of the body’s angular velocity on the principal central axes of inertia are ωx(t) = ωy(t) = ωz(t) = 1.
Figure 1 shows the monoaxial body stabilization process (the direction cosines of the stabilized axis
relative to the base coordinate system).

Inequality (13) holds in this case. Similarly, inequality (13) will remain valid if we revert the sign
of the parameter b. However, for b = −2 and the same values of all other parameters and initial
conditions, the chosen control law fails to stabilize the body axis; see the numerical integration
results in Fig. 2. Recall that the theorem proved in [30] ensures stabilization only for sufficiently
large values of the parameter h.

Now we choose µ = 2, which corresponds to the nonlinear restoring moment in the control law,
and integrate equations (10) and (12) for b = −2 and the same values of all other parameters

Fig. 1. The direction cosines of the stabilized axis: b = 2 and µ = 1.

Fig. 2. The direction cosines of the stabilized axis: b = −2 and µ = 1.
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Fig. 3. The direction cosines of the stabilized axis: b = −2 and µ = 2.

Fig. 4. The direction cosines of the stabilized axis: a = 0.6, h = 0.2, b = −0.6, and µ = 1.

Fig. 5. The direction cosines of the stabilized axis: a = 0.6, h = 0.2, b = −0.6, and µ = 2.

and initial conditions. According to Fig. 3, the resulting monoaxial body stabilization process is
convergent, which fully agrees with Theorem 3.

Let us also illustrate Remark 3 to Theorem 3. To this end, we significantly reduce the coefficients
at the restoring and dissipative moments by choosing a = 0.6 and h = 0.2 and let b = −0.6. First,
we choose µ = 1. In this case, inequality (13) fails, and the monoaxial body stabilization process
does not converge. The chaotic process on a short time interval, shown for clarity in Fig. 4, continues
in the same way on a one hundred times longer time interval as well.

Next, we choose µ = 2, leaving all other parameters and initial conditions without change. In
this case, inequality (14) holds. The corresponding computer simulation results are presented in
Fig. 5.

Clearly, the monoaxial body stabilization process converges to the program position, which
agrees with Theorem 3. The slow convergence of this process is due to the highly nonlinear control
law and the small coefficients a and h. However, their smallness should not always be considered
a drawback of the control system. In particular, in satellite attitude stabilization problems, this
property can be a natural consequence of the operating conditions of the control system.

According to Remark 3, the coefficient a in Theorem 3 can be 0. Let us choose a = 0, h = 1,
τ = 1, b = −1, and µ = 2, leaving the other parameters and initial conditions without change. The
computer simulation results in Fig. 6 confirm the theoretical conclusion.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 1 2023
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Fig. 6. The direction cosines of the stabilized axis: a = 0, h = 1, b = −1, and µ = 2.

Fig. 7. Computer simulation results vs. theoretical outcomes.

In addition, for the case under consideration, the proof of Theorem 3 yields the following upper
bounds for the domain of attraction and the rate of convergence of solutions:

‖s(t)− r‖ 6 9.21‖χ‖τ (1 + 0.23‖χ‖τ (t− t0))
−1 , (15)

‖ω(t)‖ 6 7.44‖χ‖τ (1 + 0.23‖χ‖τ (t− t0))
−1

for ‖χ‖τ < 0.28. We compare these theoretical outcomes with computer simulation results (Fig. 7).
Here, the solid line corresponds to the values ‖s(t)− r‖ obtained by numerical integration as a
function of t and the dotted line to the upper bound (15).

The calculations involve the following initial functions: ϕ(t) = 0.8, θ(t) = 0.8, ψ(t) = −0.8, and
ωx(t) = ωy(t) = ωz(t) = 0.1 for t ∈ [−τ, 0]. With this choice, the value ‖χ‖τ is 0.25, and hence the
inequality ‖χ‖τ < 0.28 holds.

7. CONCLUSIONS

This paper has considered the stability of solutions of differential systems describing the dy-
namics of mechanical systems (particularly in control systems) characterized by highly nonlinear
positional forces and distributed delay. Special Lyapunov–Krasovskii functionals of the full type
have been constructed, and the decomposition method has been applied to establish the following
results: in contrast to the linear case, the asymptotic stability of a system with highly nonlin-
ear positional forces does not require a large parametric coefficient at velocity forces; moreover,
asymptotic stability conditions are written in a simpler and constructive form. We have proved
two theorems on the stability of equilibria of such mechanical systems and one theorem on the
monoaxial stabilization of a solid body in space by a positional forces-nonlinear control law with
distributed delay. The computer simulation results have been presented to confirm the theoretical
outcomes. Further research may consider the influence of delay on the upper bound for the domain
of attraction.
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APPENDIX

Proof of Theorem 1. Using the approaches from [20–22, 38], we construct the Lyapunov–Krasovskii
functional

V (qt) =
1

2
λq̇⊤(t)Aq̇(t) +

1

2
q⊤(t)Bq(t) + q⊤(t)Aq̇(t)

− q⊤(t)

t∫

t−τ

(ξ − t+ τ)
∂Π̃(q(ξ))

∂q
dξ +

t∫

t−τ

(α+ β(ξ − t+ τ))‖q(ξ)‖µ+1dξ, (A.1)

where λ, α, and β are positive parameters. Differentiating it along the trajectories of system (3)
yields

V̇ = −λq̇⊤(t)Bq̇(t) + q̇⊤(t)Aq̇(t)− λq̇⊤(t)


∂Π(q(t))

∂q
+

t∫

t−τ

∂Π̃(q(ξ))

∂q
dξ + P (q(t))q(t)




− q⊤(t)

(
∂Π(q(t))

∂q
+ τ

∂Π̃(q(t))

∂q

)
− q̇⊤(t)

t∫

t−τ

(ξ − t+ τ)
∂Π̃(q(ξ))

∂q
dξ

− β

t∫

t−τ

‖q(ξ)‖µ+1dξ + (α+ βτ)‖q(t)‖µ+1 − α‖q(t − τ)‖µ+1.

Due to the properties of homogeneous functions [32], we obtain the upper bounds

λc1‖q̇(t)‖2 + c2‖q(t)‖2 − c3‖q(t)‖‖q̇(t)‖ − c4τ‖q(t)‖
t∫

t−τ

‖q(ξ)‖µdξ + α

t∫

t−τ

‖q(ξ)‖µ+1dξ 6 V (qt)

6 λc5‖q̇(t)‖2 + c6‖q(t)‖2 + c3‖q(t)‖‖q̇(t)‖+ c4τ‖q(t)‖
t∫

t−τ

‖q(ξ)‖µdξ + (α+ βτ)

t∫

t−τ

‖q(ξ)‖µ+1dξ,

V̇ 6−(λc7− c8)‖q̇(t)‖2+λ‖q̇(t)‖

c9‖q(t)‖µ+ c10

t∫

t−τ

‖q(ξ)‖µdξ+p0‖q(t)‖σ

− c11‖q(t)‖µ+1

+c12τ‖q̇(t)‖
t∫

t−τ

‖q(ξ)‖µdξ − β

t∫

t−τ

‖q(ξ)‖µ+1dξ + (α+ βτ)‖q(t)‖µ+1 − α‖q(t− τ)‖µ+1.

Here, ck are positive constants, k = 1, . . . , 12.

By Young’s inequality [7], for ‖qt‖τ < δ, the positive numbers λ, α, β, and δ can be chosen so
that

1

2


λc1‖q̇(t)‖2 + c2‖q(t)‖2 + α

t∫

t−τ

‖q(ξ)‖µ+1dξ


 6 V (qt)

6 2



λc5‖q̇(t)‖2 + c6‖q(t)‖2 + (α+ βτ)

t∫

t−τ

‖q(ξ)‖µ+1dξ



 , (A.2)

V̇ 6 −1

2



λc7‖q̇(t)‖2 + c11‖q(t)‖µ+1 + β

t∫

t−τ

‖q(ξ)‖µ+1dξ



 . (A.3)
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Hence, (A.1) is a Lyapunov–Krasovskii functional of the full type that satisfies the conditions of
the asymptotic stability theorem [6, p. 22].

The proof of Theorem 1 is complete.

Proof of Theorem 2. Passing to the new variables x(t) = q̇(t), y(t) = q(t) +B−1Aq̇(t), we trans-
form system (1) to

Aẋ(t) = −Bx(t)−Q(y(t)−B−1Ax(t))−
t∫

t−τ

D(y(ξ)−B−1Ax(ξ))dξ,

Bẏ(t) = −Q(y(t)−B−1Ax(t))−
t∫

t−τ

D(y(ξ)−B−1Ax(ξ))dξ.

(A.4)

The trivial solutions of the isolated subsystems (7), (8) are asymptotically stable. Therefore,
see [32, 39], for any numbers ν1 > 2 and ν2 > 2 there exist twice continuously differentiable Lya-
punov functions V1(x) and V2(y) with homogeneity orders ν1 and ν2, respectively, such that for all
x, y ∈ R

n,

m11‖x‖ν1 6 V1(x) 6 m12‖x‖ν1 , m21‖y‖ν2 6 V2(y) 6 m22‖y‖ν2 ,
∥∥∥∥
∂V1(x)

∂x

∥∥∥∥ 6 m13‖x‖ν1−1,

∥∥∥∥
∂V2(y)

∂y

∥∥∥∥ 6 m23‖y‖ν2−1,

(
∂V1(x)

∂x

)⊤

A−1Bx(t) > m14‖x‖ν1 ,
(
∂V2(y)

∂y

)⊤

B−1(Q(y) + τD(y)) > m24‖y‖ν2+µ−1.

Here, mkj are positive constants, k = 1, 2, j = 1, 2, 3, 4.

Consider the Lyapunov function

Ṽ (x, y) = V1(x) + V2(y). (A.5)

Calculating its derivative along the trajectories of system (A.4) and using the properties of homo-
geneous functions, we obtain the upper bound

˙̃
V 6 −m14‖x(t)‖ν1 + c1‖x(t)‖ν1−1(‖x(t)‖µ + ‖y(t)‖µ)

+ c2‖x(t)‖ν1−1

t∫

t−τ

(‖x(ξ)‖µ + ‖y(ξ)‖µ) dξ −
(
∂V2(y(t))

∂y

)⊤

B−1

t∫

t−τ

D(y(ξ))dξ

−
(
∂V2(y(t))

∂y

)⊤

B−1Q(y(t)) + c3‖y(t)‖ν2−1‖Q(y(t)) −Q(y(t)−B−1Ax(t))‖

+ c4‖y(t)‖ν2−1

t∫

t−τ

‖D(y(ξ)) −D(y(ξ)−B−1Ax(ξ))‖dξ,

where c1, c2, c3, and c4 are positive constants.

Note that for any numbers ε1 > 0 and ε2 > 0, it is possible to indicate h1 > 0 and h2 > 0 such
that

‖Q(y)−Q(y −B−1Ax)‖ 6 ε1‖y‖µ + h1‖x‖µ,

‖D(y)−D(y −B−1Ax)‖ 6 ε2‖y‖µ + h2‖x‖µ

for all x, y ∈ R
n.
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Now, we choose the Lyapunov–Krasovskii functional

V (xt, yt) = Ṽ (x(t), y(t)) −
(
∂V2(y(t))

∂y

)⊤

B−1

t∫

t−τ

(ξ + τ − t)D(y(ξ))dξ

+

t∫

t−τ

(α1 + β1(ξ + τ − t))‖x(ξ)‖ν1dξ +
t∫

t−τ

(α2 + β2(ξ + τ − t))‖y(ξ)‖ν2+µ−1dξ,

where Ṽ (x, y) is the Lyapunov function given by (A.5) and α1, β1, α2, and β2 are positive parame-
ters. As a result, we have

c5‖x(t)‖ν1 + c6‖y(t)‖ν2 − c7τ‖y(t)‖ν2−1

t∫

t−τ

‖y(ξ)‖µdξ

+ α1

t∫

t−τ

‖x(ξ)‖ν1dξ + α2

t∫

t−τ

‖y(ξ)‖ν2+µ−1dξ 6 V (xt, yt)

6 c8‖x(t)‖ν1 + c9‖y(t)‖ν2 + c7τ‖y(t)‖ν2−1

t∫

t−τ

‖y(ξ)‖µdξ

+ (α1 + β1τ)

t∫

t−τ

‖x(ξ)‖ν1dξ + (α2 + β2τ)

t∫

t−τ

‖y(ξ)‖ν2+µ−1dξ,

V̇ 6 −m14‖x(t)‖ν1 −m24‖y(t)‖ν2+µ−1 + c1‖x(t)‖ν1−1(‖x(t)‖µ + ‖y(t)‖µ)

+ c2‖x(t)‖ν1−1

t∫

t−τ

(‖x(ξ)‖µ+‖y(ξ)‖µ)dξ+c3‖y(t)‖ν2−1(ε1‖y(t)‖µ+h1‖x(t)‖µ)

+ τc10‖y(t)‖ν2−2

t∫

t−τ

‖y(ξ)‖µdξ

‖x(t)‖µ+‖y(t)‖µ+

t∫

t−τ

(‖x(ξ)‖µ+‖y(ξ)‖µ)dξ



+ ε2c4‖y(t)‖ν2−1

t∫

t−τ

‖y(ξ))‖µdξ + h2c4‖y(t)‖ν2−1

t∫

t−τ

‖x(ξ)‖µdξ

− β1

t∫

t−τ

‖x(ξ)‖ν1dξ − β2

t∫

t−τ

‖y(ξ)‖ν2+µ−1dξ

+ (α1 + β1τ)‖x(t)‖ν1 − α1‖x(t− τ)‖ν1 + (α2 + β2τ)‖y(t)‖ν2+µ−1

− α2‖y(t− τ)‖ν2+µ−1.

Here, ck > 0, k = 5, . . . , 10.

By Young’s inequality [7], if the homogeneity orders of the functions V1(x) and V2(y) satisfy the
condition 1 < (ν2 + µ− 1)/ν1 < µ and the values ε1, ε2, α1, β1, α2, β2, and δ are sufficiently small,
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we arrive at the relations

1

2


c6‖y(t)‖ν2 + α2

t∫

t−τ

‖y(ξ)‖ν2+µ−1dξ


+ c5‖x(t)‖ν1 + α1

t∫

t−τ

‖x(ξ)‖ν1dξ 6 V (xt, yt)

6 c8‖x(t)‖ν1 + (α1 + β1τ)

t∫

t−τ

‖x(ξ)‖ν1dξ + 2



c9‖y(t)‖ν2 + (α2 + β2τ)

t∫

t−τ

‖y(ξ)‖ν2+µ−1dξ



 ,

V̇ 6 −1

2


m14‖x(t)‖ν1 +m24‖y(t)‖ν2+µ−1 + β1

t∫

t−τ

‖x(ξ)‖ν1dξ + β2

t∫

t−τ

‖y(ξ)‖ν2+µ−1dξ




holding for ‖xt‖τ + ‖yt‖τ < δ.

The proof of Theorem 2 is complete.

Proof of Theorem 3. We choose the Lyapunov–Krasovskii functional

V (st, ωt) =
1

2
λω⊤(t)Θω(t) +

1

2
‖s(t)− r‖2 + (s(t)× r)⊤F−1Θω(t)

+ b(s(t)× r)⊤F−1

t∫

t−τ

(ξ + τ − t)‖s(ξ)− r‖µ−1s(ξ)× rdξ

+

t∫

t−τ

(α+ β(ξ + τ − t))‖s(ξ) − r‖µ+1dξ,

where λ, α, and β are positive parameters.

This functional and its derivative along the trajectories of system (10), (12) admit the upper
bounds

c1λ‖ω(t)‖2 +
1

2
‖s(t)− r‖2 − c2‖s(t)− r‖‖ω(t)‖ − c3|b|τ‖s(t)− r‖

t∫

t−τ

‖s(ξ)− r‖µdξ

+ α

t∫

t−τ

‖s(ξ)− r‖µ+1dξ 6 V (st, ωt) 6 c4λ‖ω(t)‖2 +
1

2
‖s(t)− r‖2 + c2‖s(t)− r‖‖ω(t)‖

+ c3|b|τ‖s(t)− r‖
t∫

t−τ

‖s(ξ)− r‖µdξ + (α + βτ)

t∫

t−τ

‖s(ξ)− r‖µ+1dξ,

V̇ 6 −(λc5 − c6)‖ω(t)‖2 + λa‖ω(t)‖‖s(t) − r‖µ + b(λ+ c7τ)‖ω(t)‖
t∫

t−τ

‖s(ξ)− r‖µdξ

+ c8‖ω(t)‖2‖s(t)− r‖ − (a− τb)c9‖s(t)− r‖µ−1‖s(t)× r‖2

− β

t∫

t−τ

‖s(ξ)− r‖µ+1dξ + (α+ βτ)‖s(t)− r‖µ+1 − α‖s(t− τ)− r‖µ+1.

Here, ck > 0, k = 1, . . . , 9.
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By Young’s inequality, if the number λ > 0 is sufficiently large and the positive numbers α, β,
and δ are sufficiently small, then

1

2



c1λ‖ω(t)‖2 +
1

2
‖s(t)− r‖2 + α

t∫

t−τ

‖s(ξ)− r‖µ+1dξ



 6 V (st, ωt)

6 2


c4λ‖ω(t)‖2 +

1

2
‖s(t)− r‖2 + (α+ βτ)

t∫

t−τ

‖s(ξ)− r‖µ+1dξ


 ,

V̇ 6 −1

2


λc5‖ω(t)‖2 + (a− τb)c9‖s(t)− r‖µ+1 + β

t∫

t−τ

‖s(ξ)− r‖µ+1dξ




under ‖st − r‖τ + ‖ω(t)‖ < δ.

Hence, according to [6, p. 22], the equilibrium (11) is asymptotically stable.

The proof of Theorem 3 is complete.
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